Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fuliang Du is active.

Publication


Featured researches published by Fuliang Du.


Nature Genetics | 2002

Aberrant patterns of X chromosome inactivation in bovine clones

Fei Xue; X. Cindy Tian; Fuliang Du; Chikara Kubota; M. Taneja; Andras Dinnyes; Yunping Dai; Howard Levine; Lygia V. Pereira; Xiangzhong Yang

In mammals, epigenetic marks on the X chromosomes are involved in dosage compensation. Specifically, they are required for X chromosome inactivation (XCI), the random transcriptional silencing of one of the two X chromosomes in female cells during late blastocyst development. During natural reproduction, both X chromosomes are active in the female zygote. In somatic-cell cloning, however, the cloned embryos receive one active (Xa) and one inactive (Xi) X chromosome from the donor cells. Patterns of XCIhave been reported normal in cloned mice, but have yet to be investigated in other species. We examined allele-specific expression of the X-linked monoamine oxidase type A (MAOA) gene and the expression of nine additional X-linked genes in nine cloned XX calves. We found aberrant expression patterns in nine of ten X-linked genes and hypomethylation of Xist in organs of deceased clones. Analysis of MAOA expression in bovine placentae from natural reproduction revealed imprinted XCI with preferential inactivation of the paternal X chromosome. In contrast, we found random XCI in placentae of the deceased clones but completely skewed XCI in that of live clones. Thus, incomplete nuclear reprogramming may generate abnormal epigenetic marks on the X chromosomes of cloned cattle, affecting both random and imprinted XCI.


Molecular Reproduction and Development | 2009

Gene expression profiling of single bovine embryos uncovers significant effects of in vitro maturation, fertilization and culture

Sadie Smith; Robin E. Everts; Li-Ying Sung; Fuliang Du; Raymond Page; Boyd Henderson; Sandra L. Rodriguez-Zas; T. L. Nedambale; Jean Paul Renard; Harris A. Lewin; Xiangzhong Yang; X. Cindy Tian

In vitro production (IVP) has been shown to affect embryonic gene expression and often result in large offspring syndrome (LOS) in cattle and sheep. To dissect the effects of in vitro maturation, fertilization and culture on bovine embryos, we compared the expression profiles of single blastocysts generated by: (1) in vitro maturation, fertilization and culture (IVF); (2) in vivo maturation, fertilization and in vitro culture (IVD); and (3) in vivo maturation, fertilization and development (AI). To conduct expression profiling, total RNA was isolated from individual embryos, linearly amplified and hybridized to a custom bovine cDNA microarray containing approximately 6,300 unique genes. There were 306, 367, and 200 genes differentially expressed between the AI and IVD, IVF and IVD, and AI and IVF comparisons, respectively. Interestingly, 44 differentially expressed genes were identified between the AI embryos and both the IVF and IVD embryos, making these potential candidates for LOS. There were 60 genes differentially expressed between the IVF embryos and the AI and IVD embryos. The Gene Ontology category “RNA processing” was over‐represented among the genes that were down‐regulated in the IVF embryos, indicating an effect of in vitro oocyte maturation/fertilization on the ability to transcribe maternal RNA stores. A culture effect on the expression of genes involved in translation was also observed by the comparison of AI with IVD embryos. Mol. Reprod. Dev. 76: 38–47, 2009.


Theriogenology | 2009

Optimizing IVF with sexed sperm in cattle.

Jie Xu; S. Chaubal; Fuliang Du

Sperm-sorting by flow cytometry separates X-sperm from Y-sperm with an accuracy as high as 90% or more. This technology offers farmers and the livestock industry the potential to nearly double productivity, by producing the desired sex to optimize breeding programs. Sorting speed and fertility variation of sorted sperm, however, remain limiting factors for widespread application, particularly in traditional AI programs. Alternatively, in vitro fertilization is a feasible and efficient means to increase the fertilization efficiency of sex-sorted sperm in cattle. Procedures to increase fertilization rate and improve embryo quality include optimizing heparin concentrations for semen of each bull, reducing fertilization drop size to increase sperm concentration, use of fructose instead of glucose in culture media, and use of vitrification protocols with extremely rapid cooling and warming rates.


Veterinary Medicine International | 2011

Oocyte Source and Hormonal Stimulation for In Vitro Fertilization Using Sexed Spermatozoa in Cattle

Giorgio Antonio Presicce; Jie Xu; Guochun Gong; Juan Moreno; S. Chaubal; Fei Xue; Antonino Bella; Elena Maria Senatore; Xiangzhong Yang; X. Cindy Tian; Fuliang Du

The aim of this study was to investigate the efficiency of in vitro embryo production in cattle utilizing sexed sperm from two bulls and oocytes recovered by OPU. Twenty donor animals were employed in eight OPU replicates: the first four OPU trials were conducted on animals without hormone treatment, and the last four were run on the same animals, following FSH subcutaneous and intramuscular administration. A higher rate of blastocyst development was recorded in stimulated, as compared to nonstimulated animals, (25.2% versus 12.8%, P = .001). Ocytes derived from slaughterhouse (SH) ovaries were also fertilized with sperm from the same bulls. Overall, non-sexed sperm used with oocytes derived from SH ovaries was significantly more efficient for blastocyst development than was sexed sperm with these same SH derived oocytes and sexed sperm with stimulated donor oocytes (39.8% versus 25.0% and 25.2%, P = .001). In conclusion, the use of sexed sperm with OPU-derived oocytes resulted in a significantly higher blastocyst development when donors were hormonally stimulated; furthermore, the level of efficiency achieved was comparable to that attained when the same sexed sperm was tested on oocytes derived from SH ovaries.


Biology of Reproduction | 2007

Premature Chromosome Condensation Is Not Essential for Nuclear Reprogramming in Bovine Somatic Cell Nuclear Transfer

Li-Ying Sung; Perng Chih Shen; B. Seon Jeong; Jie Xu; Ching Chien Chang; Winston T.K. Cheng; Jiin Shyan Wu; Shan Nan Lee; Diane Broek; David C. Faber; X. Cindy Tian; Xiangzhong Yang; Fuliang Du

Abstract Premature chromosome condensation (PCC) was believed to promote nuclear reprogramming and to facilitate cloning by somatic cell nuclear transfer (NT) in mammalian species. However, it is still uncertain whether PCC is necessary for the successful reprogramming of an introduced donor nucleus in cattle. In the present study, fused NT embryos were subjected to immediate activation (IA, simultaneous fusion and activation), delayed activation (DA, activation applied 4 h postfusion), and IA with aged oocytes (IAA, activation at the same oocyte age as group DA). The morphologic changes, such as nuclear swelling, the occurrence of PCC, and microtubule/aster formation, were analyzed in detail by laser-scanning confocal microscopy. When embryos were subjected to IA in both IA and IAA groups, the introduced nucleus gradually became swollen, and a pronuclear-like structure formed within the oocyte, but PCC was not observed. In contrast, delaying embryo activation resulted in 46.5%–91.2% of NT embryos exhibiting PCC. This PCC was observed beginning at 4 h postcell fusion and was shown as one, two, or multiple chromosomal complexes. Subsequently, a diversity of pronuclear-like structures existed in NT embryos, characterized as single, double, and multiple nuclei. In the oocytes exhibiting PCC, the assembled spindle structure was observed to be an interactive mass, closely associated with condensed chromosomes, but no aster had formed. Regardless of whether they were subjected to IA, IAA, or DA treatments, if the oocytes contained pronuclear-like structures, either one or two asters were observed in proximity to the nuclei. A significantly higher rate of development to blastocysts was achieved in embryos that were immediately activated (IA, 59.1%; IAA, 40.7%) than in those for which activation was delayed (14.2%). The development rate was higher in group IA than in group IAA, but it was not significant (P = 0.089). Following embryo transfer, there was no statistically significant difference in the pregnancy rates (Day 70) between two of the groups (group IA, 11.7%, n = 94 vs. group DA, 12.3%, n = 130; P > 0.05) or live term development (group IA, 4.3% vs. group DA, 4.6%; P > 0.05). Our study has demonstrated that the IA of bovine NT embryos results in embryos with increased competence for preimplantational development. Moreover, PCC was shown to be unnecessary for the reprogramming of a transplanted somatic genome in a cattle oocyte.


Cloning and Stem Cells | 2009

Beneficial Effect of Young Oocytes for Rabbit Somatic Cell Nuclear Transfer

Fuliang Du; Jie Xu; Jifeng Zhang; Shaorong Gao; Mark G. Carter; Chingli He; Li-Ying Sung; S. Chaubal; Rafael A. Fissore; X. Cindy Tian; Xiangzhong Yang; Y. Eugene Chen

This study was designed to examine the effect of the age of rabbit oocytes on the developmental potential of cloned embryos. The metaphase II oocytes used for nuclear transfer (NT) were collected at 10, 12, 14, and 16 h post-hCG injection (hpi). The total number of oocytes collected per donor (21.4-23.7) at 12 to 16 hpi was similar, but significantly higher than that collected at 10 hpi (16.2). Additionally, a significant improvement in blastocyst development was achieved with embryos generated by electrically mediated cell fusion (56.0%), compared to those from nuclear injection (13.1 %) (Experiment 1). Markedly higher blastocyst development (45.8-54.5%) was also achieved with oocytes collected at 10-12 hpi than from those collected 14-16 hpi (8.3-14.3%) (Experiment 2). In Experiment 3, the blastocyst rates of NT embryos derived from oocytes harvested 12 hpi (39.2-42.8 %) were significantly higher than from those collected at 16 hpi (6.8-8.4 %) (p < 0.05), regardless of the donor cell age. Kinase activity assays showed variable changes of activity in rabbit oocytes over the period of 10-16 hpi; however, there was no correlation with preimplantational development (blastocyst rate vs. MPF, R = 0.326; blastocyst rate vs. MAPK, R = -0.131). Embryo transfer of NT embryos utilizing 12 hpi oocytes resulted in one full-term but stillborn, and one live cloned rabbit; thus, an efficiency of 1.7 % (n = 117) (Experiment 4). These results demonstrated that NT utilizing relatively young rabbit oocytes, harvested at 10-12 h after hCG injection, was beneficial for the development of NT embryos.


Reproductive Biomedicine Online | 2012

Spatial and temporal distribution of Oct-4 and acetylated H4K5 in rabbit embryos

Chien Hong Chen; Wei Fang Chang; Chia Chia Liu; Hwa Yun Su; Song-Kun Shyue; Winston T.K. Cheng; Y. Eugene Chen; Shinn-Chih Wu; Fuliang Du; Li-Ying Sung; Jie Xu

Rabbit is a unique species to study human embryology; however, there are limited reports on the key transcription factors and epigenetic events of rabbit embryos. This study examined the Oct-4 and acetylated H4K5 (H4K5ac) patterns in rabbit embryos using immunochemistry staining. The average intensity of the Oct-4 signal in the nuclei of the whole embryo spiked upon fertilization, then decreased until the 8-cell stage and increased afterwards until the compact morula (CM) stage. It decreased thereafter from the CM stage to the early blastocyst (EB) stage, with a minimum at the expanded blastocyst (EXPB) stage and came back to a level similar to that of the CM-stage embryos in the hatching blastocysts (HB). The Oct-4 signal was observed in both the inner cell mass (ICM) and the trophectoderm (TE) cells of blastocysts. The average H4K5ac signal intensity of the whole embryo increased upon fertilization, started to decrease at the 4-cell stage, reached a minimum at the 8-cell stage, increased again at the EXPB stage and peaked at the HB stage. While TE cells maintained similar levels of H4K5ac throughout the blastocyst stages, ICM cells of HB showed higher levels of H4K5ac than those of EB and EXPB. Understanding key genetic and epigenetic events during early embryo development will help to identify factors contributing to embryo losses and consequently improve embryo survival rates. As a preferred laboratory species for many human disease studies such as atherosclerosis, rabbit is also a pioneer species in the development of several embryo biotechnologies, such as IVF, transgenesis, animal cloning, embryo cryopreservation and embryonic stem cells. However, there are limited reports on key transcription factors and epigenetic events of rabbit embryos. In the present study, we documented the temporal and spatial distribution of Oct-4 protein and H4K5 acetylation during early embryo development using the immunostaining approach. We also compared the patterns of these two important biomarkers between the inner cell mass (ICM) and the trophectoderm (TE) cells in blastocyst-stage embryos. Our findings suggest that a combination of Oct-4, H4K5ac and possibly other biomarkers such as Cdx-2 is needed to accurately identify different lineages of cells in morula and blastocyst stage rabbit embryos. Importantly, we revealed a novel wave of Oct-4 intensity change in the ICM cells of rabbit blastocysts. The signal was high at the early blastocyst stage, reached a minimum at the expanded blastocyst stage and returned to a high level at the hatching blastocyst stage. We hypothesize that the signal may have reflected the regulation of Oct-4 through enhancer switching and therefore may be related to cell lineage formation in rabbit embryos. These findings enrich our understanding on key genetic and epigenetic programming events during early embryo development in rabbits.


Theriogenology | 2011

Open-pulled straw vitrification differentiates cryotolerance of in vitro cultured rabbit embryos at the eight-cell stage

T.A. Lin; Chien Hong Chen; Li-Ying Sung; Mark G. Carter; Y.E. Chen; Fuliang Du; Jyh-Cherng Ju; Jie Xu

The objective was to determine cryotolerance of in vitro cultured rabbit embryos to the open-pulled straw (OPS) method. Overall, 844 rabbit embryos at pronuclear, 2- to 4-cell, 8-cell, and morula/blastocyst stages were vitrified, and ≥ 1 mo later, were sequentially warmed, rehydrated, and subjected to continuous culture (n = 691) or embryo transfer (ET, n = 153). Embryos vitrified at the 8-cell stage or beyond had greater survival, expanded blastocyst and hatched blastocyst rates in vitro, and better term development than those vitrified at earlier stages. The 8-cell group had 70.1% expanded blastocysts, 63.7% hatched blastocysts, and 25.7% term development, as compared to 1.5-17.7%, 1.5-4.3% and 2.8-3.7% in the pronuclear, 2-cell and 4-cell embryos, respectively (P < 0.05). The expanded and hatched blastocyst rates in vitrified morula/blastocyst post-warming were higher than that in the 8-cell group; however, their term development after ET was similar (8-cell vs morula/blastocyst: 25.7 vs 19.4%, P > 0.05). Development after ET was comparable between vitrified-warmed embryos and fresh controls at 8-cell and morula/blastocyst stages (19.4-25.7 vs 13.7-26.6%, P > 0.05). For embryos at pronuclear or 2- to 4-cell stages, however, term rates were lower in the vitrified-warmed (2.8-3.7%) than in fresh controls (28.6-35.6%, P < 0.05). Therefore, cultured rabbit embryos at various developmental stages had differential crytolerance. Under the present experimental conditions, the 8-cell stage appeared to be the critical point for acquiring cryotolerance. We inferred that for this OPS cryopreservation protocol, rabbit embryos should be vitrified no earlier than the 8-cell stage, and stage-specific protocols may be needed to maximize embryo survival after vitrification and re-warming.


Cellular Reprogramming | 2012

Recombinant Rabbit Leukemia Inhibitory Factor and Rabbit Embryonic Fibroblasts Support the Derivation and Maintenance of Rabbit Embryonic Stem Cells

Fei Xue; Yinghong Ma; Y. Eugene Chen; Jifeng Zhang; Tzu An Lin; Chien Hong Chen; Wei Wen Lin; Marsha Roach; Jyh Cherng Ju; Lan Yang; Fuliang Du; Jie Xu

The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs.


Reproductive Biomedicine Online | 2012

Dynamic profiles of Oct-4, Cdx-2 and acetylated H4K5 in in-vivo-derived rabbit embryos

Chien Hong Chen; Jie Xu; Wei Fang Chang; Chia Chia Liu; Hwa Yun Su; Y. Eugene Chen; Fuliang Du; Li-Ying Sung

This study documents the spatial and temporal distribution of Oct-4, Cdx-2 and acetylated H4K5 (H4K5ac) by immunocytochemistry staining using in-vivo-derived rabbit embryos at different stages: day-3 compact morulae, day-4 early blastocysts, day-4 expanded blastocysts, day-5 blastocysts, day-6 blastocysts and day-7 blastocysts. The Oct-4 signal was stronger in the inner cell mass (ICM)/epiblast cells than in the trophectoderm (TE) cells in all blastocyst stages except day-4 expanded blastocysts, where the signal was similarly weak in both the ICM and TE cells. The Cdx-2 signal was first detected in a small number of TE cells of day-4 early blastocysts, and became evident in the TE cells exclusively afterwards. A consistently strong H4K5ac signal was observed in the TE cells in all blastocyst stages examined. In particular, this signal was stronger in the TE than in the ICM cells in day-4 early blastocysts, day-4 expanded blastocysts and day-5 blastocysts. Double staining of H4K5ac with either Oct-4 or Cdx-2 on embryos at different blastocyst stages confirmed these findings. This work suggests that day 4 is a critical timing for lineage formation in rabbit embryos. A combination of Oct-4, Cdx-2 and H4K5ac can be used as biomarkers to identify different lineage cells in rabbit blastocysts.

Collaboration


Dive into the Fuliang Du's collaboration.

Top Co-Authors

Avatar

Xiangzhong Yang

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Jie Xu

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Li-Ying Sung

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

X.C. Tian

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

X. Cindy Tian

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

S. Chaubal

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

T. L. Nedambale

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

J. Xu

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

S. Jiang

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Chien Hong Chen

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge