Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where X.C. Tian is active.

Publication


Featured researches published by X.C. Tian.


Biology of Reproduction | 2003

Epigenetic Characteristics and Development of Embryos Cloned from Donor Cells Treated by Trichostatin A or 5-aza-2′-deoxycytidine

B.P. Enright; Chikara Kubota; Xiangzhong Yang; X.C. Tian

Abstract Development to blastocyst following nuclear transfer is dependent on the donor cells ability to reprogram its genome to that of a zygote. This reprogramming step is inefficient and may be dependent on a number of factors, including chromatin organization. Trichostatin A (TSA; 0–5 μM), a histone deacetylase inhibitor, was used to increase histone acetylation and 5-aza-2′-deoxycytidine (5-aza-dC; 0–5 μM), a DNA methyl-transferase inhibitor, was used to decrease methylation of chromatin in donor cells in an attempt to improve their reprogrammability. Adult fibroblast cells treated with 1.25 or 5 μM TSA had elevated histone H3 acetylation compared to untreated controls. Cells treated with 0.3 μM 5-aza-dC had decreased methylation compared to untreated controls. Both drugs at 0.08 μM caused morphological changes of the donor cells. Development to blastocysts by embryos cloned from donor cells after 0.08 or 0.3 μM 5-aza-dC treatments was lower than in embryos cloned from untreated control cells (9.7% and 4.2%, respectively, vs. 25.1%), whereas 0.08 μM TSA treatment of donor cells increased blastocyst development compared to controls (35.1% vs. 25.1%). These results indicate that partial erasure of preexisting epigenetic marks of donor cells improves subsequent in vitro development of cloned embryos.


Science | 2010

Impeding Xist Expression from the Active X Chromosome Improves Mouse Somatic Cell Nuclear Transfer

Kimiko Inoue; Takashi Kohda; Michihiko Sugimoto; Takashi Sado; Narumi Ogonuki; Shogo Matoba; Hirosuke Shiura; Rieko Ikeda; Keiji Mochida; Takashi Fujii; Ken Sawai; Arie P. Otte; X.C. Tian; Xiangzhong Yang; Fumitoshi Ishino; Kuniya Abe; Atsuo Ogura

Cloning Futures Cloning mammals by somatic cell nuclear transfer is a technique with many potential applications in regenerative medicine, agriculture, and pharmaceutics; however, it is inefficient because of the incidence of aberrant genomic reprogramming. Inoue et al. (p. 496, published online 16 September) found that the gene product of Xist, which normally inactivates one of the two X chromosomes in females, was unexpectedly expressed ectopically from active X chromosomes in cloned mice. When Xist was deleted from the mice, gene expression returned to normal and the efficiency of somatic cell nuclear transfer increased about ninefold, offering promise for future nuclear transfer technology. Efficiency of mouse nuclear transfer was improved by correcting aberrant gene expression on the active X chromosome. Cloning mammals by means of somatic cell nuclear transfer (SCNT) is highly inefficient because of erroneous reprogramming of the donor genome. Reprogramming errors appear to arise randomly, but the nature of nonrandom, SCNT-specific errors remains elusive. We found that Xist, a noncoding RNA that inactivates one of the two X chromosomes in females, was ectopically expressed from the active X (Xa) chromosome in cloned mouse embryos of both sexes. Deletion of Xist on Xa showed normal global gene expression and resulted in about an eight- to ninefold increase in cloning efficiency. We also identified an Xist-independent mechanism that specifically down-regulated a subset of X-linked genes through somatic-type repressive histone blocks. Thus, we have identified nonrandom reprogramming errors in mouse cloning that can be altered to improve the efficiency of SCNT methods.


Biology of Reproduction | 2005

Methylation and Acetylation Characteristics of Cloned Bovine Embryos from Donor Cells Treated with 5-aza-2′-Deoxycytidine

B.P. Enright; Li-Ying Sung; C.-C. Chang; Xiangzhong Yang; X.C. Tian

Abstract Differentiated somatic cells and embryos cloned from somatic cells by nuclear transfer (NT) have higher levels of DNA methylation than gametes and early embryos produced in vivo. Reducing DNA methylation in donor cells before NT by treating them with chemicals such as the DNA methyl-transferase inhibitor (5-aza-2′-deoxycytidine; 5-aza-dC) may improve cloning efficiency of NT embryos by providing donor cells with similar epigenetic characteristics as in vivo embryos. Previously, high levels of this reagent were used to treat donor cells, and decreased development of cloned embryos was observed. In this study, we tested a lower range (0.005 to 0.08 μM) of this drug and used cell cycle distribution changes as an indicator of changes in the characteristics of donor cells. We found that at 0.01 μM 5-aza-dC induced changes in the cycle stage distribution of donor cells, increased the fusion rate of NT embryos, and had no deleterious effect on the percentage of blastocyst development. Levels of 5-aza-dC greater than 0.01 μM significantly decreased embryo development. Embryos cloned from donor cells treated with a low dose of 5-aza-dC had higher levels of DNA methylation than embryos produced by in vitro fertilization, but they also had higher levels of histone acetylation. Although 5-aza-dC at 0.04 μM or higher reduced DNA methylation and histone acetylation levels to those of in vitro-fertilized embryos, development to blastocyst was reduced, suggesting that this concentration of the drug was detrimental. In summary, 5-aza-dC at 0.01 μM altered donor cell characteristics while showing no deleterious effects on embryos cloned from treated cells.


Biology of Reproduction | 2003

Epigenetic Characteristics of Bovine Donor Cells for Nuclear Transfer: Levels of Histone Acetylation

B.P. Enright; Byeong-Seon Jeong; Xiangzhong Yang; X.C. Tian

Abstract Donor cell type, cell-cycle stage, and passage number of cultured cells all affect the developmental potential of cloned embryos. Because acetylation of the histones on nuclear chromatin is an important aspect of gene activation, the present study investigated the differences in histone acetylation of bovine fibroblast and cumulus cells at various passages and cell-cycle stages. The acetylation was qualitatively analyzed by epifluorescent confocal microscopy and quantitatively by immunofluorescent flow cytometry. Specifically, we studied levels of histone H4 acetylated at lysine 8 and histone H3 acetylated at lysine 18; acetylation at these lysine residues is among the most common for these histone molecules. We also studied levels of linker histone H1 in donor cells. Our results show that stage of cell cycle, cell type, and number of cell passages all had an effect on histone content. Histone H1 and acetyl histone H3 increased with cell passage (passages 5–15) in G0/G1- and G2/M-stage cumulus and fibroblast cells. We also found that acetyl histone H4 was lower in early versus late cell passages (passage 5 vs. 15) for G0/G1-stage cumulus cells. In both cell types examined, acetyl histones increased with cell-cycle progression from G0/G1 into the S and G2/M phases. These results indicate that histone acetylation status is remodeled by in vitro cell culture, and this may have implications for nuclear transfer.


Biology of Reproduction | 2002

Reproductive Characteristics of Cloned Heifers Derived from Adult Somatic Cells

B.P. Enright; M. Taneja; David Schreiber; J.W. Riesen; X.C. Tian; J.E. Fortune; Xiangzhong Yang

Abstract This study examined the onset of puberty, follicular dynamics, reproductive hormone profiles, and ability to maintain pregnancy in cloned heifers produced by somatic cell nuclear transfer. Four adult somatic cell-cloned heifers, derived from a 13-yr-old Holstein cow, were compared to 4 individual age- and weight-matched heifers produced by artificial insemination (AI). From 7 to 9 mo of age, jugular venous blood samples were collected twice weekly, and from 10 to 11 or 12 mo of age, blood sampling was carried out every other day. After the heifers reached puberty (defined as the first of 3 consecutive blood samples with peripheral plasma progesterone concentrations of >1 ng/ml), ultrasound examination of ovaries and jugular plasma sample collection were carried out daily for 1 estrous cycle. Cloned heifers reached puberty later than controls (mean ± SEM, 314.7 ± 9.6 vs. 272 ± 4.4 days and 336.7 ± 13 vs. 302.8 ± 4.5 kg for clones and controls, respectively; P < 0.05). However, cloned and control heifers were not different in estrous cycle length, ovulatory follicle diameter, number of follicular waves, or profiles of hormonal changes (LH, FSH, estradiol, and progesterone). Three of the 4 clones and all 4 control heifers became pregnant after AI. These results demonstrate that clones from an aged adult have normal reproductive development.


Biotechnology Annual Review | 2000

Transgenic farm animals: applications in agriculture and biomedicine

Xiangzhong Yang; X.C. Tian; Y Dai; B Wang

During the last decade, tremendous progress has been made in the area of transgenic farm animals. While there are many important transgenic farm animal applications in agriculture, funding has been very limited and progress has been rather slow in this area. Encouragingly, the potential applications of transgenic farm animals as bioreactors for producing human therapeutic proteins and as organ donors for transplantations in humans have attracted vast funding from the private sectors. Several transgenic animal products are already in various phases of clinical trials. Estimates are, that in the near future, the worlds demands on human pharmaceutical proteins may largely be met by transgenic farm animals. While there are still major challenges ahead in the area of xenotransplantation using transgenic animal organs, transgenic tissues or cells have demonstrated promising results as a potential tool for gene therapy. Recent development on cloning, embryonic stem cells and alternative transgenic methods may further expand the transgenic applications in both agriculture and biomedicine.


Cloning and Stem Cells | 2009

Improvement of embryonic stem cell line derivation efficiency with novel medium, glucose concentration, and epigenetic modifications.

Chul Kim; Tomokazu Amano; Joonghoon Park; Mark G. Carter; X.C. Tian; Xiangzhong Yang

Although the first mouse embryonic stem (ES) cell lines were derived 2 decades ago, and standard protocols for ES cell derivation are widely used today, the technical difficulty of these protocols still pose a challenge for many investigators attempting to produce large numbers of ES cell lines, and are limited to only a few mouse strains. Recently, glucose concentration was shown to have a significant effect on the efficiency of ES cell derivation, but the mechanism(s) mediating this effect are still the subject of debate. In this report, we investigated the effect of glucose concentration on ES cell derivation efficiency from blastocysts in the context of a new medium, Minimum Essential Medium alpha (MEMalpha). Furthermore, we propose novel methods to improve mouse ES cell derivation efficiency using in vitro epigenetic modifications during early passages, combined with detection of Oct4-expressing cells. Based on the results reported here, modified MEMalpha containing high glucose improves the efficiency of ES cell derivation remarkably, compared with Knockout Dulbeccos-Modified Eagle Media (KDMEM). Epigenetic modifications are able to improve the efficiency even further.


JAK-STAT | 2013

JAK-STAT3 and somatic cell reprogramming

Yong Tang; X.C. Tian

Reprogramming somatic cells to pluripotency, especially by the induced pluripotent stem cell (iPSC) technology, has become widely used today to generate various types of stem cells for research and for regenerative medicine. However the mechanism(s) of reprogramming still need detailed elucidation, including the roles played by the leukemia inhibitory factor (LIF) signaling pathway. LIF is central in maintaining the ground state pluripotency of mouse embryonic stem cells (ESCs) and iPSCs by activating the Janus kinase-signal transducer and activator of transcription 3 (JAK-STAT3) pathway. Characterizing and understanding this pathway holds the key to generate naïve pluripotent human iPSCs which will facilitate the development of patient-specific stem cell therapy. Here we review the historical and recent developments on how LIF signaling pathway regulates ESC pluripotency maintenance and somatic cell reprogramming, with a focus on JAK-STAT3.


Scientific Reports | 2016

mRNA Levels of Imprinted Genes in Bovine In Vivo Oocytes, Embryos and Cross Species Comparisons with Humans, Mice and Pigs

Zongliang Jiang; Hong Dong; Xinbao Zheng; Sadie L. Marjani; David M. Donovan; Jingbo Chen; X.C. Tian

Twenty-six imprinted genes were quantified in bovine in vivo produced oocytes and embryos using RNA-seq. Eighteen were detectable and their transcriptional patterns were: largely decreased (MEST and PLAGL1); first decreased and then increased (CDKN1C and IGF2R); peaked at a specific stage (PHLDA2, SGCE, PEG10, PEG3, GNAS, MEG3, DGAT1, ASCL2, NNAT, and NAP1L5); or constantly low (DIRAS3, IGF2, H19 and RTL1). These patterns reflect mRNAs that are primarily degraded, important at a specific stage, or only required at low quantities. The mRNAs for several genes were surprisingly abundant. For instance, transcripts for the maternally imprinted MEST and PLAGL1, were high in oocytes and could only be expressed from the maternal allele suggesting that their genomic imprints were not yet established/recognized. Although the mRNAs detected here were likely biallelically transcribed before the establishment of imprinted expression, the levels of mRNA during these critical stages of development have important functional consequences. Lastly, we compared these genes to their counterparts in mice, humans and pigs. Apart from previously known differences in the imprinting status, the mRNA levels were different among these four species. The data presented here provide a solid reference for expression profiles of imprinted genes in embryos produced using assisted reproductive biotechnologies.


Scientific Reports | 2016

Effects of High Hydrostatic Pressure on Expression Profiles of In Vitro Produced Vitrified Bovine Blastocysts.

Zongliang Jiang; Patrick Harrington; Ming Zhang; Sadie L. Marjani; Joonghoon Park; Lynn Kuo; Csaba Pribenszky; X.C. Tian

High hydrostatic pressure (HHP) has been used to pre-condition embryos before essential, yet potentially detrimental procedures such as cryopreservation. However, the mechanisms for HHP are poorly understood. We treated bovine blastocysts with three different HHP (40, 60 and 80 MPa) in combination with three recovery periods (0, 1 h, 2 h post HHP). Re-expansion rates were significantly higher at 40 and 60 but lower at 80 MPa after vitrification-warming in the treated groups than controls. Microarray analysis revealed 399 differentially expressed transcripts, representing 254 unique genes, among different groups. Gene ontology analysis indicated that HHP at 40 and 60 MPa promoted embryo competence through down-regulation of genes in cell death and apoptosis, and up-regulation of genes in RNA processing, cellular growth and proliferation. In contrast, 80 MPa up-regulated genes in apoptosis, and down-regulated protein folding and cell cycle-related genes. Moreover, gene expression was also influenced by the length of the recovery time after HHP. The significantly over-represented categories were apoptosis and cell death in the 1 h group, and protein folding, response to unfolded protein and cell cycle in the 2 h group compared to 0 h. Taken together, HHP promotes competence of vitrified bovine blastocysts through modest transcriptional changes.

Collaboration


Dive into the X.C. Tian's collaboration.

Top Co-Authors

Avatar

Xiangzhong Yang

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Fuliang Du

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

S. Chaubal

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Z. Jiang

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Li-Ying Sung

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Jingyue Duan

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

J. Xu

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Jie Xu

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

T. L. Nedambale

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Young Tang

University of Connecticut

View shared research outputs
Researchain Logo
Decentralizing Knowledge