Fumiaki Ogawa
University of Edinburgh
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fumiaki Ogawa.
Neuron | 2007
Steven J. Clapcote; Tatiana V. Lipina; J. Kirsty Millar; Shaun Mackie; Sheila Christie; Fumiaki Ogawa; Jason P. Lerch; Keith Trimble; Masashi Uchiyama; Yoshiyuki Sakuraba; Hideki Kaneda; Toshihiko Shiroishi; Miles D. Houslay; R. Mark Henkelman; John G. Sled; Yoichi Gondo; David J. Porteous; John C. Roder
To support the role of DISC1 in human psychiatric disorders, we identified and analyzed two independently derived ENU-induced mutations in Exon 2 of mouse Disc1. Mice with mutation Q31L showed depressive-like behavior with deficits in the forced swim test and other measures that were reversed by the antidepressant bupropion, but not by rolipram, a phosphodiesterase-4 (PDE4) inhibitor. In contrast, L100P mutant mice exhibited schizophrenic-like behavior, with profound deficits in prepulse inhibition and latent inhibition that were reversed by antipsychotic treatment. Both mutant DISC1 proteins exhibited reduced binding to the known DISC1 binding partner PDE4B. Q31L mutants had lower PDE4B activity, consistent with their resistance to rolipram, suggesting decreased PDE4 activity as a contributory factor in depression. This study demonstrates that Disc1 missense mutations in mice give rise to phenotypes related to depression and schizophrenia, thus supporting the role of DISC1 in major mental illness.
Biochemical and Biophysical Research Communications | 2008
Nicholas J. Bradshaw; Fumiaki Ogawa; Beatriz Antolin-Fontes; Jennifer E. Chubb; Becky C. Carlyle; Sheila Christie; Antoine Claessens; David J. Porteous; J. Kirsty Millar
Disrupted-In-Schizophrenia 1 (DISC1) is a risk factor for schizophrenia and other major mental illnesses. Its protein binding partners include the Nuclear Distribution Factor E Homologs (NDE1 and NDEL1), LIS1, and phosphodiesterases 4B and 4D (PDE4B and PDE4D). We demonstrate that NDE1, NDEL1 and LIS1, together with their binding partner dynein, associate with DISC1, PDE4B and PDE4D within the cell, and provide evidence that this complex is present at the centrosome. LIS1 and NDEL1 have been previously suggested to be synaptic, and we now demonstrate localisation of DISC1, NDE1, and PDE4B at synapses in cultured neurons. NDE1 is phosphorylated by cAMP-dependant Protein Kinase A (PKA), whose activity is, in turn, regulated by the cAMP hydrolysis activity of phosphodiesterases, including PDE4. We propose that DISC1 acts as an assembly scaffold for all of these proteins and that the NDE1/NDEL1/LIS1/dynein complex is modulated by cAMP levels via PKA and PDE4.
The Journal of Neuroscience | 2011
Nicholas J. Bradshaw; Dinesh C. Soares; Becky C. Carlyle; Fumiaki Ogawa; Hazel Davidson-Smith; Sheila Christie; Shaun Mackie; Pippa Thomson; David J. Porteous; J. Kirsty Millar
Nuclear distribution factor E-homolog 1 (NDE1), Lissencephaly 1 (LIS1), and NDE-like 1 (NDEL1) together participate in essential neurodevelopmental processes, including neuronal precursor proliferation and differentiation, neuronal migration, and neurite outgrowth. NDE1/LIS1/NDEL1 interacts with Disrupted in Schizophrenia 1 (DISC1) and the cAMP-hydrolyzing enzyme phosphodiesterase 4 (PDE4). DISC1, PDE4, NDE1, and NDEL1 have each been implicated as genetic risk factors for major mental illness. Here, we demonstrate that DISC1 and PDE4 modulate NDE1 phosphorylation by cAMP-dependent protein kinase A (PKA) and identify a novel PKA substrate site on NDE1 at threonine-131 (T131). Homology modeling predicts that phosphorylation at T131 modulates NDE1–LIS1 and NDE1–NDEL1 interactions, which we confirm experimentally. DISC1–PDE4 interaction thus modulates organization of the NDE1/NDEL1/LIS1 complex. T131-phosphorylated NDE1 is present at the postsynaptic density, in proximal axons, within the nucleus, and at the centrosome where it becomes substantially enriched during mitosis. Mutation of the NDE1 T131 site to mimic PKA phosphorylation inhibits neurite outgrowth. Thus PKA-dependent phosphorylation of the NDE1/LIS1/NDEL1 complex is DISC1–PDE4 modulated and likely to regulate its neural functions.
Human Molecular Genetics | 2012
Jennifer E. Eykelenboom; Gareth J. Briggs; Nicholas J. Bradshaw; Dinesh C. Soares; Fumiaki Ogawa; Sheila Christie; Elise L.V. Malavasi; Paraskevi Makedonopoulou; Shaun Mackie; M. P. Malloy; Martin A. Wear; Elizabeth A. Blackburn; Janice Bramham; Andrew M. McIntosh; Douglas Blackwood; Walter J. Muir; David J. Porteous; J. Kirsty Millar
Disrupted-In-Schizophrenia 1 (DISC1) was identified as a risk factor for psychiatric illness through its disruption by a balanced chromosomal translocation, t(1;11)(q42.1;q14.3), that co-segregates with schizophrenia, bipolar disorder and depression. We previously reported that the translocation reduces DISC1 expression, consistent with a haploinsufficiency disease model. Here we report that, in lymphoblastoid cell lines, the translocation additionally results in the production of abnormal transcripts due to the fusion of DISC1 with a disrupted gene on chromosome 11 (DISC1FP1/Boymaw). These chimeric transcripts encode abnormal proteins, designated CP1, CP60 and CP69, consisting of DISC1 amino acids 1–597 plus 1, 60 or 69 amino acids, respectively. The novel 69 amino acids in CP69 induce increased α-helical content and formation of large stable protein assemblies. The same is predicted for CP60. Both CP60 and CP69 exhibit profoundly altered functional properties within cell lines and neurons. Both are predominantly targeted to mitochondria, where they induce clustering and loss of membrane potential, indicative of severe mitochondrial dysfunction. There is currently no access to neural material from translocation carriers to confirm these findings, but there is no reason to suppose that these chimeric transcripts will not also be expressed in the brain. There is thus potential for the production of abnormal chimeric proteins in the brains of translocation carriers, although at substantially lower levels than for native DISC1. The mechanism by which inheritance of the translocation increases risk of psychiatric illness may therefore involve both DISC1 haploinsufficiency and mitochondrial deficiency due to the effects of abnormal chimeric protein expression. GenBank accession numbers: DISC1FP1 (EU302123), Boymaw (GU134617), der 11 chimeric transcript DISC1FP1 exon 2 to DISC1 exon 9 (JQ650115), der 1 chimeric transcript DISC1 exon 4 to DISC1FP1 exon 4 (JQ650116), der 1 chimeric transcript DISC1 exon 6 to DISC1FP1 exon 3a (JQ650117).
Geophysical Research Letters | 2012
Fumiaki Ogawa; Hisashi Nakamura; Kazuaki Nishii; Takafumi Miyasaka; Akira Kuwano-Yoshida
[1]xa0Major “storm tracks”, where migratory cyclones and anticyclones recurrently develop, are observed around midlatitude oceanic frontal zones with strong meridional gradient of sea-surface temperature (SST). A set of atmospheric general circulation model experiments is performed with zonally uniform SST prescribed at the model lower boundary. The latitudinal SST profile for each hemisphere is characterized by a single front. The frontal latitude is varied systematically from one experiment to another, while the intensity of the frontal gradient is kept unchanged. Though idealized, the experiments reveal a climatological tendency for a low-level storm track to be organized along or slightly poleward of the SST front if located in the subtropics or midlatitudes. As a surface manifestation of an eddy-driven polar-front jet (PFJ), surface westerly axis tends to form on the poleward flank of the front. This anchoring effect of the SST front is also hinted at upper levels, but the climatological positions of the storm track and PFJ are less sensitive to the frontal latitude. For the SST front at subpolar latitude, the joint primary axes of the upper-level storm track and PFJ form in midlatitudes away from the SST front. Their positions correspond to their counterpart simulated with a particular SST profile from which frontal gradient has been removed, suggesting that the anchoring effect of a subpolar SST front on the storm track and PFJ is overshadowed by atmospheric internal dynamics, namely, the self-maintenance mechanism of a midlatitude storm track and PFJ through their interactions.
Human Molecular Genetics | 2014
Fumiaki Ogawa; Elise L.V. Malavasi; Darragh K. Crummie; Jennifer E. Eykelenboom; Dinesh C. Soares; Shaun Mackie; David J. Porteous; J. Kirsty Millar
Disrupted-In-Schizophrenia 1 (DISC1) is a candidate risk factor for schizophrenia, bipolar disorder and severe recurrent depression. Here, we demonstrate that DISC1 associates robustly with trafficking-protein-Kinesin-binding-1 which is, in turn, known to interact with the outer mitochondrial membrane proteins Miro1/2, linking mitochondria to the kinesin motor for microtubule-based subcellular trafficking. DISC1 also associates with Miro1 and is thus a component of functional mitochondrial transport complexes. Consistent with these observations, in neuronal axons DISC1 promotes specifically anterograde mitochondrial transport. DISC1 thus participates directly in mitochondrial trafficking, which is essential for neural development and neurotransmission. Any factor affecting mitochondrial DISC1 function is hence likely to have deleterious consequences for the brain, potentially contributing to increased risk of psychiatric illness. Intriguingly, therefore, a rare putatively causal human DISC1 sequence variant, 37W, impairs the ability of DISC1 to promote anterograde mitochondrial transport. This is likely related to a number of mitochondrial abnormalities induced by expression of DISC1-37W, which redistributes mitochondrial DISC1 and enhances kinesin mitochondrial association, while also altering protein interactions within the mitochondrial transport complex.
Human Molecular Genetics | 2012
Rosie M. Walker; Alison E. Hill; Alice Newman; Gillian Hamilton; Helen S. Torrance; Susan Anderson; Fumiaki Ogawa; Pelagia Derizioti; Jérôme Nicod; Sonja C. Vernes; Simon E. Fisher; Pippa A. Thomson; David J. Porteous; Kathryn L. Evans
Disrupted in schizophrenia 1 (DISC1) is a leading candidate susceptibility gene for schizophrenia, bipolar disorder and recurrent major depression, which has been implicated in other psychiatric illnesses of neurodevelopmental origin, including autism. DISC1 was initially identified at the breakpoint of a balanced chromosomal translocation, t(1;11) (q42.1;14.3), in a family with a high incidence of psychiatric illness. Carriers of the translocation show a 50% reduction in DISC1 protein levels, suggesting altered DISC1 expression as a pathogenic mechanism in psychiatric illness. Altered DISC1 expression in the post-mortem brains of individuals with psychiatric illness and the frequent implication of non-coding regions of the gene by association analysis further support this assertion. Here, we provide the first characterization of the DISC1 promoter region. Using dual luciferase assays, we demonstrate that a region -300 to -177 bp relative to the transcription start site (TSS) contributes positively to DISC1 promoter activity, while a region -982 to -301 bp relative to the TSS confers a repressive effect. We further demonstrate inhibition of DISC1 promoter activity and protein expression by forkhead-box P2 (FOXP2), a transcription factor implicated in speech and language function. This inhibition is diminished by two distinct FOXP2 point mutations, R553H and R328X, which were previously found in families affected by developmental verbal dyspraxia. Our work identifies an intriguing mechanistic link between neurodevelopmental disorders that have traditionally been viewed as diagnostically distinct but which do share varying degrees of phenotypic overlap.
Human Molecular Genetics | 2012
Elise L.V. Malavasi; Fumiaki Ogawa; David J. Porteous; J. Kirsty Millar
Disrupted-In-Schizophrenia 1 (DISC1), a strong genetic candidate for psychiatric illness, encodes a multicompartmentalized molecular scaffold that regulates interacting proteins with key roles in neurodevelopment and plasticity. Missense DISC1 variants are associated with the risk of mental illness and with brain abnormalities in healthy carriers, but the underlying mechanisms are unclear. We examined the effect of rare and common DISC1 amino acid substitutions on subcellular targeting. We report that both the rare putatively causal variant 37W and the common variant 607F independently disrupt DISC1 nuclear targeting in a dominant-negative fashion, predicting that DISC1 nuclear expression is impaired in 37W and 607F carriers. In the nucleus, DISC1 interacts with the transcription factor Activating Transcription Factor 4 (ATF4), which is involved in the regulation of cellular stress responses, emotional behaviour and memory consolidation. At basal cAMP levels, wild-type DISC1 inhibits the transcriptional activity of ATF4, an effect that is weakened by both 37W and 607F independently, most likely as a consequence of their defective nuclear targeting. The common variant 607F additionally reduces DISC1/ATF4 interaction, which likely contributes to its weakened inhibitory effect. We also demonstrate that DISC1 modulates transcriptional responses to endoplasmic reticulum stress, and that this modulatory effect is ablated by 37W and 607F. By showing that DISC1 amino acid substitutions associated with psychiatric illness affect its regulatory function in ATF4-mediated transcription, our study highlights a potential mechanism by which these variants may impact on transcriptional events mediating cognition, emotional reactivity and stress responses, all processes of direct relevance to psychiatric illness.
PLOS ONE | 2014
Jayanth S. Chandran; Ilias Kazanis; Steven J. Clapcote; Fumiaki Ogawa; J. Kirsty Millar; David J. Porteous; Charles ffrench-Constant
Disrupted in schizophrenia 1 (DISC1) is a risk factor for a spectrum of neuropsychiatric illnesses including schizophrenia, bipolar disorder, and major depressive disorder. Here we use two missense Disc1 mouse mutants, described previously with distinct behavioural phenotypes, to demonstrate that Disc1 variation exerts differing effects on the formation of newly generated neurons in the adult hippocampus. Disc1 mice carrying a homozygous Q31L mutation, and displaying depressive-like phenotypes, have fewer proliferating cells while Disc1 mice with a homozygous L100P mutation that induces schizophrenia-like phenotypes, show changes in the generation, placement and maturation of newly generated neurons in the hippocampal dentate gyrus. Our results demonstrate Disc1 allele specific effects in the adult hippocampus, and suggest that the divergence in behavioural phenotypes may in part stem from changes in specific cell populations in the brain.
ACS Chemical Neuroscience | 2016
Fumiaki Ogawa; Laura C. Murphy; Elise L.V. Malavasi; Shane T. O’Sullivan; Helen S. Torrance; David J. Porteous; J. Kirsty Millar
Mitochondria are essential for neuronal function, providing the energy required to power neurotransmission, and fulfilling many important additional roles. In neurons, mitochondria must be efficiently transported to sites, including synapses, where their functions are required. Neurons, with their highly elongated morphology, are consequently extremely sensitive to defective mitochondrial trafficking which can lead to neuronal ill-health/death. We recently demonstrated that DISC1 associates with mitochondrial trafficking complexes where it associates with the core kinesin and dynein adaptor molecule TRAK1. We now show that the DISC1 interactors NDE1 and GSK3β also associate robustly with TRAK1 and demonstrate that NDE1 promotes retrograde axonal mitochondrial movement. GSK3β is known to modulate axonal mitochondrial motility, although reports of its actual effect are conflicting. We show that, in our system, GSK3β promotes anterograde mitochondrial transport. Finally, we investigated the influence of cAMP elevation upon mitochondrial motility, and found a striking increase in mitochondrial motility and retrograde movement. DISC1, NDE1, and GSK3β are implicated as risk factors for major mental illness. Our demonstration that they function together within mitochondrial trafficking complexes suggests that defective mitochondrial transport may be a contributory disease mechanism in some cases of psychiatric disorder.