Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fumikazu Suto is active.

Publication


Featured researches published by Fumikazu Suto.


The Journal of Neuroscience | 2005

Plexin-A4 Mediates Axon-Repulsive Activities of Both Secreted and Transmembrane Semaphorins and Plays Roles in Nerve Fiber Guidance

Fumikazu Suto; Keisuke Ito; Masato Uemura; Masayuki Shimizu; Yutaka Shinkawa; Makoto Sanbo; Tomoyasu Shinoda; Miu Tsuboi; Seiji Takashima; Takeshi Yagi; Hajime Fujisawa

It has been proposed that four members of the plexin A subfamily (plexin-As; plexin-A1, -A2, -A3, and -A4) and two neuropilins (neuropilin-1 and neuropilin-2) form complexes and serve as receptors for class 3 secreted semaphorins (Semas), potent neural chemorepellents. The roles of given plexin-As in semaphorin signaling and axon guidance, however, are mostly unknown. Here, to elucidate functions of plexin-A4 in semaphorin signaling and axon guidance events in vivo, we generated plexin-A4 null mutant mice by targeted disruption of the plexin-A4 gene. Plexin-A4 mutant mice were defective in the trajectory and projection of peripheral sensory axons and sympathetic ganglion (SG) axons and the formation of the anterior commissure and the barrels. The defects in peripheral sensory and SG axons were fundamentally related to those of neuropilin-1 or Sema3A mutant embryos reported but were more moderate than the phenotype in these mutants. The growth cone collapse assay showed that dorsal root ganglion axons and SG axons of plexin-A4 mutant embryos partially lost their responsiveness to Sema3A. These results suggest that plexin-A4 plays roles in the propagation of Sema3A activities and regulation of axon guidance and that other members of the plexin-A subfamily are also involved in the propagation of Sema3A activities. Plexin-A4-deficient SG axons did not lose their responsiveness to Sema3F, suggesting that plexin-A4 serves as a Sema3A-specific receptor, at least in SG axons. In addition, the present study showed that plexin-A4 bound class 6 transmembrane semaphorins, Sema6A and Sema6B, and mediated their axon-repulsive activities, independently of neuropilin-1. Our results imply that plexin-A4 mediates multiple semaphorin signals and regulates axon guidance in vivo.


Neuron | 2007

Interactions between plexin-A2, plexin-A4, and semaphorin 6A control lamina-restricted projection of hippocampal mossy fibers.

Fumikazu Suto; Miu Tsuboi; Haruyuki Kamiya; Hidenobu Mizuno; Yuji Kiyama; Shoji Komai; Masayuki Shimizu; Makoto Sanbo; Takeshi Yagi; Yasushi Hiromi; Alain Chédotal; Kevin J. Mitchell; Toshiya Manabe; Hajime Fujisawa

Hippocampal mossy fibers project preferentially to the stratum lucidum, the proximal-most lamina of the suprapyramidal region of CA3. The molecular mechanisms that govern this lamina-restricted projection are still unknown. We examined the projection pattern of mossy fibers in mutant mice for semaphorin receptors plexin-A2 and plexin-A4, and their ligand, the transmembrane semaphorin Sema6A. We found that plexin-A2 deficiency causes a shift of mossy fibers from the suprapyramidal region to the infra- and intrapyramidal regions, while plexin-A4 deficiency induces inappropriate spreading of mossy fibers within CA3. We also report that the plexin-A2 loss-of-function phenotype is genetically suppressed by Sema6A loss of function. Based on these results, we propose a model for the lamina-restricted projection of mossy fibers: the expression of plexin-A4 on mossy fibers prevents them from entering the Sema6A-expressing suprapyramidal region of CA3 and restricts them to the proximal-most part, where Sema6A repulsive activity is attenuated by plexin-A2.


Nature Neuroscience | 2008

Plexin-A2 and its ligand, Sema6A, control nucleus-centrosome coupling in migrating granule cells

Julie Renaud; Géraldine Kerjan; Itsuko Sumita; Yvrick Zagar; Virginie Georget; Doyeun Kim; Coralie Fouquet; Kazunori Suda; Makoto Sanbo; Fumikazu Suto; Susan L. Ackerman; Kevin J. Mitchell; Hajime Fujisawa; Alain Chédotal

During their migration, cerebellar granule cells switch from a tangential to a radial mode of migration. We have previously demonstrated that this involves the transmembrane semaphorin Sema6A. We show here that plexin-A2 is the receptor that controls Sema6A function in migrating granule cells. In plexin-A2–deficient (Plxna2−/−) mice, which were generated by homologous recombination, many granule cells remained in the molecular layer, as we saw in Sema6a mutants. A similar phenotype was observed in mutant mice that were generated by mutagenesis with N-ethyl-N-nitrosourea and had a single amino-acid substitution in the semaphorin domain of plexin-A2. We found that this mutation abolished the ability of Sema6A to bind to plexin-A2. Mouse chimera studies further suggested that plexin-A2 acts in a cell-autonomous manner. We also provide genetic evidence for a ligand-receptor relationship between Sema6A and plexin-A2 in this system. Using time-lapse video microscopy, we found that centrosome-nucleus coupling and coordinated motility were strongly perturbed in Sema6a−/− and Plxna2−/− granule cells. This suggests that semaphorin-plexin signaling modulates cell migration by controlling centrosome positioning.


Developmental Dynamics | 2001

Differential expression of plexin-A subfamily members in the mouse nervous system.

Yasunori Murakami; Fumikazu Suto; Masayuki Shimizu; Tomoyasu Shinoda; Toshiki Kameyama; Hajime Fujisawa

Plexins comprise a family of transmembrane proteins (the plexin family) which are expressed in nervous tissues. Some plexins have been shown to interact directly with secreted or transmembrane semaphorins, while plexins belonging to the A subfamily are suggested to make complexes with other membrane proteins, neuropilins, and propagate chemorepulsive signals of secreted semaphorins of class 3 into cells or neurons. Despite that much information has been gathered on the plexin‐semaphorin interaction, the role of plexins in the nervous system is not well understood. To gain insight into the functions of plexins in the nervous system, we analyzed spatial and temporal expression patterns of three members of the plexin‐A subfamily (plexin‐A1, ‐A2, and ‐A3) in the developing mouse nervous system by in situ hybridization analysis in combination with immunohistochemistry. We show that the three plexins are differentially expressed in sensory receptors or neurons in a developmentally regulated manner, suggesting that a particular plexin or set of plexins is shared by neuronal elements and functions as the receptor for semaphorins to regulate neuronal development.


Neuron | 2011

Class 5 Transmembrane Semaphorins Control Selective Mammalian Retinal Lamination and Function

Ryota L. Matsuoka; Onanong Chivatakarn; Tudor C. Badea; Ivy S. Samuels; Hugh Cahill; Kei ichi Katayama; Sumit R. Kumar; Fumikazu Suto; Alain Chédotal; Neal S. Peachey; Jeremy Nathans; Yutaka Yoshida; Roman J. Giger; Alex L. Kolodkin

In the vertebrate retina, neurites from distinct neuronal cell types are constrained within the plexiform layers, allowing for establishment of retinal lamination. However, the mechanisms by which retinal neurites are segregated within the inner or outer plexiform layers are not known. We find that the transmembrane semaphorins Sema5A and Sema5B constrain neurites from multiple retinal neuron subtypes within the inner plexiform layer (IPL). In Sema5A⁻/⁻; Sema5B⁻/⁻ mice, retinal ganglion cells (RGCs) and amacrine and bipolar cells exhibit severe defects leading to neurite mistargeting into the outer portions of the retina. These targeting abnormalities are more prominent in the outer (OFF) layers of the IPL and result in functional defects in select RGC response properties. Sema5A and Sema5B inhibit retinal neurite outgrowth through PlexinA1 and PlexinA3 receptors both in vitro and in vivo. These findings define a set of ligands and receptors required for the establishment of inner retinal lamination and function.


Neural Development | 2008

Semaphorin-6A controls guidance of corticospinal tract axons at multiple choice points

Annette E. Rünker; Graham E Little; Fumikazu Suto; Hajime Fujisawa; Kevin J. Mitchell

BackgroundThe trajectory of corticospinal tract (CST) axons from cortex to spinal cord involves a succession of choice points, each of which is controlled by multiple guidance molecules. To assess the involvement of transmembrane semaphorins and their plexin receptors in the guidance of CST axons, we have examined this tract in mutants of Semaphorin-6A (Sema6A), Plexin-A2 (PlxnA2) and Plexin-A4 (PlxnA4).ResultsWe describe defects in CST guidance in Sema6A mutants at choice points at the mid-hindbrain boundary (MHB) and in navigation through the pons that dramatically affect how many axons arrive to the hindbrain and spinal cord and result in hypoplasia of the CST. We also observe defects in guidance within the hindbrain where a proportion of axons aberrantly adopt a ventrolateral position and fail to decussate. This function in the hindbrain seems to be mediated by the known Sema6A receptor PlxnA4, which is expressed by CST axons. Guidance at the MHB, however, appears independent of this and of the other known receptor, PlxnA2, and may depend instead on Sema6A expression on CST axons themselves at embryonic stages.ConclusionThese data identify Sema6A as a major contributor to the guidance of CST axons at multiple choice points. They highlight the active control of guidance at the MHB and also implicate the inferior olive as an important structure in the guidance of CST axons within the hindbrain. They also suggest that Sema6A, which is strongly expressed by oligodendrocytes, may affect CST regeneration in adults.


Mechanisms of Development | 2003

Identification and characterization of a novel mouse plexin, plexin-A4 ☆

Fumikazu Suto; Yasunori Murakami; Fumio Nakamura; Yoshio Goshima; Hajime Fujisawa

Plexins belonging to the plexin-A subfamily form complexes with neuropilins and propagate signals of class 3 semaphorins into neurons, even though they do not directly bind the semaphorins. In this study, we identified a new member of the plexin-A subfamily in the mice, plexin-A4, and showed that it was expressed in the developing nervous system with a pattern different to that of other members of the plexin-A subfamily (plexin-A1, plexin-A2 and plexin-A3). COS-7 cells coexpressing plexin-A4 with neuropilin-1 were induced to contract by Sema3A, a member of the class 3 semaphorin. Ectopic expression of plexin-A4 in mitral cells that are originally insensitive to Sema3A resulted in the collapse of growth cones in the presence of Sema3A. These results suggest that plexin-A4 plays a role in the propagation of Sema3A activities.


International Immunology | 2008

Plexin-A4 negatively regulates T lymphocyte responses

Midori Yamamoto; Kazuhiro Suzuki; Tatsusada Okuno; Takehiro Ogata; Noriko Takegahara; Hyota Takamatsu; Masayuki Mizui; Masahiko Taniguchi; Alain Chédotal; Fumikazu Suto; Hajime Fujisawa; Atsushi Kumanogoh; Hitoshi Kikutani

Semaphorins and their receptors play crucial roles not only in axon guidance during neuronal development but also in the regulation of immune responses. Plexin-A4, a member of the plexin-A subfamily, forms a receptor complex with neuropilins and transduces signals for class III semaphorins in the nervous system. Although plexin-A4 is also expressed in the lymphoid tissues, the involvement of plexin-A4 in immune responses remains unknown. To explore the role of plexin-A4 in the immune system, we analyzed immune responses in plexin-A4-deficient (plexin-A4-/-) mice. Among immune cells, plexin-A4 mRNA was detected in T cells, dendritic cells and macrophages but not in B cells and NK cells. Plexin-A4-/- mice had normal numbers and cell surface markers for each lymphocyte subset, suggesting that plexin-A4 is not essential for lymphocyte development. However, plexin-A4-/- mice exhibited enhanced antigen-specific T cell responses and heightened sensitivity to experimental autoimmune encephalomyelitis. Plexin-A4-/- T cells exhibited hyperproliferative responses to anti-CD3 stimulation and to allogeneic dendritic cells in vitro. Furthermore, this hyperproliferation was also observed in both T cells from neuropilin-1 mutant (npn-1(Sema-)) mice, in which the binding site of class III semaphorins is disrupted, and T cells from Sema3A-deficient (Sema-3A-/-) mice. Collectively, these results suggest that plexin-A4, as a component of the receptor complex for class III semaphorins, negatively regulates T cell-mediated immune responses.


The Journal of Neuroscience | 2010

Roles of Semaphorin-6B and Plexin-A2 in Lamina-Restricted Projection of Hippocampal Mossy Fibers

Hiroshi Tawarayama; Yutaka Yoshida; Fumikazu Suto; Kevin J. Mitchell; Hajime Fujisawa

Hippocampal mossy fibers project preferentially to the proximal-most lamina of the suprapyramidal region of CA3, the stratum lucidum, and proximal-most parts of the infrapyrmidal region of CA3c. Molecular mechanisms that govern the lamina-restricted projection of mossy fibers, however, have not been fully understood. We previously studied functions of neural repellent Semaphorin-6A (Sema6A), a class 6 transmembrane semaphorin, and its receptors, plexin-A2 (PlxnA2) and PlxnA4, in mossy fiber projection and have proposed that PlxnA4-expressing mossy fibers are principally prevented from entering the Sema6A-expressing suprapyramidal and infrapyramidal regions of CA3 but are permitted to grow into proximal parts of the regions, where repulsive activity of Sema6A is competitively suppressed by PlxnA2 (Suto et al., 2007). In the present study we demonstrate that Sema6B, another class 6 transmembrane semaphorin, is expressed in CA3 and repels mossy fibers in a PlxnA4-dependent manner in vitro. In Sema6B-deficient mice several mossy fibers aberrantly project to the stratum radiatum and the stratum oriens. The number of aberrant mossy fibers is increased in Sema6A;Sema6B double knock-out mice, indicating that Sema6A and Sema6B function additively to regulate proper projection of mossy fibers. PlxnA2 does not suppress the Sema6B response, but itself promotes growth of mossy fibers. Based on these results, we propose that the balance between mossy fiber repulsion by Sema6A and Sema6B and attraction by PlxnA2 and unknown molecule(s) prescribes the areas permissive for mossy fibers to innervate.


Genetics | 2007

The Plexin PLX-2 and the Ephrin EFN-4 Have Distinct Roles in MAB-20/Semaphorin 2A Signaling in Caenorhabditis elegans Morphogenesis

Fumi Nakao; Martin L. Hudson; Motoshi Suzuki; Zachary Peckler; Rie Kurokawa; Zhicen Liu; Keiko Gengyo-Ando; Akira Nukazuka; Takashi Fujii; Fumikazu Suto; Yukimasa Shibata; Go Shioi; Hajime Fujisawa; Shohei Mitani; Andrew D. Chisholm; Shin Takagi

Semaphorins are extracellular proteins that regulate axon guidance and morphogenesis by interacting with a variety of cell surface receptors. Most semaphorins interact with plexin-containing receptor complexes, although some interact with non-plexin receptors. Class 2 semaphorins are secreted molecules that control axon guidance and epidermal morphogenesis in Drosophila and Caenorhabditis elegans. We show that the C. elegans class 2 semaphorin MAB-20 binds the plexin PLX-2. plx-2 mutations enhance the phenotypes of hypomorphic mab-20 alleles but not those of mab-20 null alleles, indicating that plx-2 and mab-20 act in a common pathway. Both mab-20 and plx-2 mutations affect epidermal morphogenesis during embryonic and in postembryonic development. In both contexts, plx-2 null mutant phenotypes are much less severe than mab-20 null phenotypes, indicating that PLX-2 is not essential for MAB-20 signaling. Mutations in the ephrin efn-4 do not synergize with mab-20, indicating that EFN-4 may act in MAB-20 signaling. EFN-4 and PLX-2 are coexpressed in the late embryonic epidermis where they play redundant roles in MAB-20-dependent cell sorting.

Collaboration


Dive into the Fumikazu Suto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshio Goshima

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fumio Nakamura

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge