Fumio Takada
Kitasato University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fumio Takada.
American Journal of Human Genetics | 2013
Yoko Aoki; Tetsuya Niihori; Toshihiro Banjo; Nobuhiko Okamoto; Seiji Mizuno; Kenji Kurosawa; Tsutomu Ogata; Fumio Takada; Michihiro Yano; Toru Ando; Tadataka Hoshika; Christopher Barnett; Hirofumi Ohashi; Hiroshi Kawame; Tomonobu Hasegawa; Takahiro Okutani; Tatsuo Nagashima; Satoshi Hasegawa; Ryo Funayama; Takeshi Nagashima; Keiko Nakayama; Shin-ichi Inoue; Yusuke Watanabe; Toshihiko Ogura; Yoichi Matsubara
RAS GTPases mediate a wide variety of cellular functions, including cell proliferation, survival, and differentiation. Recent studies have revealed that germline mutations and mosaicism for classical RAS mutations, including those in HRAS, KRAS, and NRAS, cause a wide spectrum of genetic disorders. These include Noonan syndrome and related disorders (RAS/mitogen-activated protein kinase [RAS/MAPK] pathway syndromes, or RASopathies), nevus sebaceous, and Schimmelpenning syndrome. In the present study, we identified a total of nine missense, nonsynonymous mutations in RIT1, encoding a member of the RAS subfamily, in 17 of 180 individuals (9%) with Noonan syndrome or a related condition but with no detectable mutations in known Noonan-related genes. Clinical manifestations in the RIT1-mutation-positive individuals are consistent with those of Noonan syndrome, which is characterized by distinctive facial features, short stature, and congenital heart defects. Seventy percent of mutation-positive individuals presented with hypertrophic cardiomyopathy; this frequency is high relative to the overall 20% incidence in individuals with Noonan syndrome. Luciferase assays in NIH 3T3 cells showed that five RIT1 alterations identified in children with Noonan syndrome enhanced ELK1 transactivation. The introduction of mRNAs of mutant RIT1 into 1-cell-stage zebrafish embryos was found to result in a significant increase of embryos with craniofacial abnormalities, incomplete looping, a hypoplastic chamber in the heart, and an elongated yolk sac. These results demonstrate that gain-of-function mutations in RIT1 cause Noonan syndrome and show a similar biological effect to mutations in other RASopathy-related genes.
Journal of Human Genetics | 2005
Tetsuya Niihori; Yoko Aoki; Hirofumi Ohashi; Kenji Kurosawa; Tatsuro Kondoh; Satoshi Ishikiriyama; Hiroshi Kawame; Hotaka Kamasaki; Tsutomu Yamanaka; Fumio Takada; Kimio Nishio; Masahiro Sakurai; Hiroshi Tamai; Tatsuro Nagashima; Yoichi Suzuki; Shigeo Kure; Kunihiro Fujii; Masue Imaizumi; Yoichi Matsubara
AbstractNoonan syndrome (NS) is characterized by short stature, characteristic facial features, and heart defects. Recently, missense mutations of PTPN11, the gene encoding protein tyrosine phosphatase (PTP) SHP-2, were identified in patients with NS. Further, somatic mutations in PTPN11 were detected in childhood leukemia. Recent studies showed that the phosphatase activities of five mutations identified in NS and juvenile myelomonocytic leukemia (JMML) were increased. However, the functional properties of the other mutations remain unidentified. In this study, in order to clarify the differences between the mutations identified in NS and leukemia, we examined the phosphatase activity of 14 mutants of SHP-2. We identified nine mutations, including a novel F71I mutation, in 16 of 41 NS patients and two mutations, including a novel G503V mutation, in three of 29 patients with leukemia. Immune complex phosphatase assays of individual mutants transfected in COS7 cells showed that ten mutants identified in NS and four mutants in leukemia showed 1.4-fold to 12.7-fold increased activation compared with wild-type SHP-2. These results suggest that the pathogenesis of NS and leukemia is associated with enhanced phosphatase activity of mutant SHP-2. A comparison of the phosphatase activity in each mutant and a review of previously reported cases showed that high phosphatase activity observed in mutations at codons 61, 71, 72, and 76 was significantly associated with leukemogenesis.
Human Mutation | 2010
Tomoko Kobayashi; Yoko Aoki; Tetsuya Niihori; Hélène Cavé; Alain Verloes; Nobuhiko Okamoto; Hiroshi Kawame; Ikuma Fujiwara; Fumio Takada; Takako Ohata; Satoru Sakazume; Tatsuya Ando; Noriko Nakagawa; Pablo Lapunzina; Antonio González Meneses; Gabriele Gillessen-Kaesbach; Dagmar Wieczorek; Kenji Kurosawa; Seiji Mizuno; Hirofumi Ohashi; Albert David; Nicole Philip; Afag Guliyeva; Yoko Narumi; Shigeo Kure; Shigeru Tsuchiya; Yoichi Matsubara
Noonan syndrome (NS) and related disorders are autosomal dominant disorders characterized by heart defects, facial dysmorphism, ectodermal abnormalities, and mental retardation. The dysregulation of the RAS/MAPK pathway appears to be a common molecular pathogenesis of these disorders: mutations in PTPN11, KRAS, and SOS1 have been identified in patients with NS, those in KRAS, BRAF, MAP2K1, and MAP2K2 in patients with CFC syndrome, and those in HRAS mutations in Costello syndrome patients. Recently, mutations in RAF1 have been also identified in patients with NS and two patients with LEOPARD (multiple lentigines, electrocardiographic conduction abnormalities, ocular hypertelorism, pulmonary stenosis, abnormal genitalia, retardation of growth, and sensorineural deafness) syndrome. In the current study, we identified eight RAF1 mutations in 18 of 119 patients with NS and related conditions without mutations in known genes. We summarized clinical manifestations in patients with RAF1 mutations as well as those in NS patients withPTPN11, SOS1, or KRAS mutations previously reported. Hypertrophic cardiomyopathy and short stature were found to be more frequently observed in patients with RAF1 mutations. Mutations in RAF1 were clustered in the conserved region 2 (CR2) domain, which carries an inhibitory phosphorylation site (serine at position 259; S259). Functional studies revealed that the RAF1 mutants located in the CR2 domain resulted in the decreased phosphorylation of S259, and that mutant RAF1 then dissociated from 14‐3‐3, leading to a partial ERK activation. Our results suggest that the dephosphorylation of S259 is the primary pathogenic mechanism in the activation of RAF1 mutants located in the CR2 domain as well as of downstream ERK. Hum Mutat 30:1–11, 2010.
Human Genetics | 1995
Shiro Ikegawa; Yoshimitsu Fukushima; Minoru Isomura; Fumio Takada; Yusuke Nakamura
Achondroplasia, the most common cause of chondrodysplasia in man, is characterized by short-limbed dwarfism, macrocephaly, and dysplasia of metaphyses of the tubular bones. Recently, mutations in the gene encoding fibroblast growth factor receptor-3 (FGFR-3) have been found in patients with achondroplasia. All mutations so far reported had occurred at codon 380, resulting in the substitution of an arginine for a glycine in the transmembrane domain of the predicted protein. We have examined the transmembrane domain of the FGFR-3 gene in seven Japanese patients with achondroplasia. Of the six cases that were sporadic, all carried a mutation in codon 380; the single familial case bore a novel mutation of a G-to-T transition at codon 375, which resulted in substitution of a cysteine for a glycine.
American Journal of Medical Genetics Part A | 2006
Haruya Sakai; Remco Visser; Shiro Ikegawa; Etsuro Ito; Hironao Numabe; Yoriko Watanabe; Haruo Mikami; Tatsuro Kondoh; Hiroshi Kitoh; Ryusuke Sugiyama; Nobuhiko Okamoto; Tsutomu Ogata; Riccardo Fodde; Seiji Mizuno; Kyoko Takamura; Masayuki Egashira; Nozomu Sasaki; Sachiro Watanabe; Shigeru Nishimaki; Fumio Takada; Toshiro Nagai; Yasushi Okada; Yoshikazu Aoka; Kazushi Yasuda; Mitsuji Iwasa; Shigetoyo Kogaki; Naoki Harada; Takeshi Mizuguchi; Naomichi Matsumoto
In order to evaluate the contribution of FBN1, FBN2, TGFBR1, and TGFBR2 mutations to the Marfan syndrome (MFS) phenotype, the four genes were analyzed by direct sequencing in 49 patients with MFS or suspected MFS as a cohort study. A total of 27 FBN1 mutations (22 novel) in 27 patients (55%, 27/49), 1 novel TGFBR1 mutation in 1 (2%, 1/49), and 2 recurrent TGFBR2 mutations in 2 (4%, 2/49) were identified. No FBN2 mutation was found. Three patients with either TGFBR1 or TGFBR2 abnormality did not fulfill the Ghent criteria, but expressed some overlapping features of MFS and Loeys–Dietz syndrome (LDS). In the remaining 19 patients, either of the genes did not show any abnormalities. This study indicated that FBN1 mutations were predominant in MFS but TGFBRs defects may account for approximately 5–10% of patients with the syndrome.
Genomics | 1995
Fumio Takada; Naohiko Seki; Yoh-ichi Matsuda; Yoshinaga Takayama; Masaya Kawakami
Human and mouse genes for the complement-activating component (P100) of Ra-reactive factor, a novel bactericidal factor (CRARF and Crarf), were mapped to R-banded metaphase chromosomes by fluorescence in situ hybridization with human and mouse P100 cDNA 2.7 and 2.0 kb long, respectively. The localization of fluorescent signals showed that CRARF and Crarf mapped to human 3q27-q28 and mouse 16B2-B3, respectively. This evidence is consistent with the previous assumption that the distal portion of the long arm of human chromosome 3 is homologous to the proximal portion of mouse chromosome 16.
Journal of Human Genetics | 2006
Takako Ohata; Kunihiro Yoshida; Haruya Sakai; Haruka Hamanoue; Takeshi Mizuguchi; Yusaku Shimizu; Tomomi Okano; Fumio Takada; Kinya Ishikawa; Hidehiro Mizusawa; Ko-ichiro Yoshiura; Yoshimitsu Fukushima; Shu-ichi Ikeda; Naomichi Matsumoto
AbstractThe molecular bases of autosomal dominant cerebellar ataxia (ADCA) have been increasingly elucidated, but 17-50% of ADCA families still remain genetically undefined in Japan. In this study we investigated 67 genetically undefined ADCA families from the Nagano prefecture, and found that 63 patients from 51 families possessed the −16C>T change in the puratrophin-1 gene, which was recently found to be pathogenic for 16q22-linked ADCA. Most patients shared a common haplotype around the puratrophin-1 gene. All patients with the −16C>T change had pure cerebellar ataxia with middle-aged or later onset. Only one patient in a large, −16C>T positive family did not have this change, but still shared a narrowed haplotype with, and was clinically indistinguishable from, the other affected family members. In Nagano, 16q22-linked ADCA appears to be much more prevalent than either SCA6 or dentatorubral-pallidoluysian atrophy (DRPLA), and may explain the high frequency of spinocerebellar ataxia.
American Journal of Medical Genetics Part A | 2007
Akira Nishimura; Haruya Sakai; Shiro Ikegawa; Hiroshi Kitoh; Nobuyuki Haga; Satoshi Ishikiriyama; Toshiro Nagai; Fumio Takada; Takako Ohata; Fumihiko Tanaka; Hotaka Kamasaki; Hirotomo Saitsu; Takeshi Mizuguchi; Naomichi Matsumoto
FBN2, FBN1, TGFBR1, and TGFBR2 were analyzed by direct sequencing in 15 probands with suspected congenital contractural arachnodactyly (CCA). A total of four novel FBN2 mutations were found in four probands (27%, 4/15), but remaining the 11 did not show any abnormality in either of the genes. This study indicated that FBN2 mutations were major abnormality in CCA, and TGFBR and FBN1 defects may not be responsible for the disorder. FBN2 mutations were only found at introns 30, 31, and 35 in this study. Thus analysis of a mutational hotspot from exons 22 to 36 (a middle part) of FBN2 should be prioritized in CCA as previously suggested.
American Journal of Medical Genetics Part A | 2014
Yoko Narumi; Sachiko Nishina; Motoharu Tokimitsu; Yoko Aoki; Rika Kosaki; Keiko Wakui; Noriyuki Azuma; Toshinori Murata; Fumio Takada; Yoshimitsu Fukushima; Tomoki Kosho
Congenital cataracts are the most important cause of severe visual impairment in infants. Genetic factors contribute to the disease development and 29 genes are known to cause congenital cataracts. Identifying the genetic cause of congenital cataracts can be difficult because of genetic heterogeneity. V‐maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF) encodes a basic region/leucine zipper transcription factor that plays a key role as a regulator of embryonic lens fiber cell development. MAF mutations have been reported to cause juvenile‐onset pulverulent cataract, microcornea, iris coloboma, and other anterior segment dysgenesis. We report on six patients in a family who have congenital cataracts were identified MAF mutation by whole exome sequencing (WES). The heterozygous MAF mutation Q303L detected in the present family occurs in a well conserved glutamine residue at the basic region of the DNA‐binding domain. All affected members showed congenital cataracts. Three of the six members showed microcornea and one showed iris coloboma. Congenital cataracts with MAF mutation exhibited phenotypically variable cataracts within the family. Review of the patients with MAF mutations supports the notion that congenital cataracts caused by MAF mutations could be accompanied by microcornea and/or iris coloboma. WES is a useful tool for detecting disease‐causing mutations in patients with genetically heterogeneous conditions.
Genetics in Medicine | 2014
Toshiyuki Maeda; Ken Higashimoto; Kosuke Jozaki; Hitomi Yatsuki; Kazuhiko Nakabayashi; Yoshio Makita; Hidefumi Tonoki; Nobuhiko Okamoto; Fumio Takada; Hirofumi Ohashi; Makoto Migita; Rika Kosaki; Keiko Matsubara; Tsutomu Ogata; Muneaki Matsuo; Yuhei Hamasaki; Yasufumi Ohtsuka; Kenichi Nishioka; Keiichiro Joh; Tsunehiro Mukai; Kenichiro Hata; Hidenobu Soejima
Purpose:Expression of imprinted genes is regulated by DNA methylation of differentially methylated regions (DMRs). Beckwith–Wiedemann syndrome is an imprinting disorder caused by epimutations of DMRs at 11p15.5. To date, multiple methylation defects have been reported in Beckwith–Wiedemann syndrome patients with epimutations; however, limited numbers of DMRs have been analyzed. The susceptibility of DMRs to aberrant methylation, alteration of gene expression due to aberrant methylation, and causative factors for multiple methylation defects remain undetermined.Methods:Comprehensive methylation analysis with two quantitative methods, matrix-assisted laser desorption/ionization mass spectrometry and bisulfite pyrosequencing, was conducted across 29 DMRs in 54 Beckwith–Wiedemann syndrome patients with epimutations. Allelic expressions of three genes with aberrant methylation were analyzed. All DMRs with aberrant methylation were sequenced.Results:Thirty-four percent of KvDMR1–loss of methylation patients and 30% of H19DMR–gain of methylation patients showed multiple methylation defects. Maternally methylated DMRs were susceptible to aberrant hypomethylation in KvDMR1–loss of methylation patients. Biallelic expression of the genes was associated with aberrant methylation. Cis-acting pathological variations were not found in any aberrantly methylated DMR.Conclusion:Maternally methylated DMRs may be vulnerable to DNA demethylation during the preimplantation stage, when hypomethylation of KvDMR1 occurs, and aberrant methylation of DMRs affects imprinted gene expression. Cis-acting variations of the DMRs are not involved in the multiple methylation defects.Genet Med 16 12, 903–912.