Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoko Aoki is active.

Publication


Featured researches published by Yoko Aoki.


Nature Genetics | 2005

Germline mutations in HRAS proto-oncogene cause Costello syndrome

Yoko Aoki; Tetsuya Niihori; Hiroshi Kawame; Kenji Kurosawa; Hirofumi Ohashi; Yukichi Tanaka; Mirella Filocamo; Kumi Kato; Yoichi Suzuki; Shigeo Kure; Yoichi Matsubara

Costello syndrome is a multiple congenital anomaly and mental retardation syndrome characterized by coarse face, loose skin, cardiomyopathy and predisposition to tumors. We identified four heterozygous de novo mutations of HRAS in 12 of 13 affected individuals, all of which were previously reported as somatic and oncogenic mutations in various tumors. Our observations suggest that germline mutations in HRAS perturb human development and increase susceptibility to tumors.


Nature Genetics | 2006

Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome

Tetsuya Niihori; Yoko Aoki; Yoko Narumi; Giovanni Neri; Hélène Cavé; Alain Verloes; Nobuhiko Okamoto; Raoul C. M. Hennekam; Gabriele Gillessen-Kaesbach; Dagmar Wieczorek; Maria Ines Kavamura; Kenji Kurosawa; Hirofumi Ohashi; Louise C. Wilson; Delphine Héron; Dominique Bonneau; Giuseppina Corona; Tadashi Kaname; Kenji Naritomi; Clarisse Baumann; Naomichi Matsumoto; Kumi Kato; Shigeo Kure; Yoichi Matsubara

Cardio-facio-cutaneous (CFC) syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. It phenotypically overlaps with Noonan and Costello syndrome, which are caused by mutations in PTPN11 and HRAS, respectively. In 43 individuals with CFC, we identified two heterozygous KRAS mutations in three individuals and eight BRAF mutations in 16 individuals, suggesting that dysregulation of the RAS-RAF-ERK pathway is a common molecular basis for the three related disorders.


Human Mutation | 2008

The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders†

Yoko Aoki; Tetsuya Niihori; Yoko Narumi; Shigeo Kure; Yoichi Matsubara

The RAS proteins and their downstream pathways play pivotal roles in cell proliferation, differentiation, survival and cell death, but their physiological roles in human development had remained unknown. Noonan syndrome, Costello syndrome, and cardio‐facio‐cutaneous (CFC) syndrome are autosomal dominant multiple congenital anomaly syndromes characterized by a distinctive facial appearance, heart defects, musculocutaneous abnormalities, and mental retardation. A variety of mutations in protein tyrosine phosphatase, non‐receptor type 11(PTPN11) has been identified in 50% of Noonan patients. Specific mutations in PTPN11 have been identified in LEOPARD (multiple lentigines, electrocardiographic conduction abnormalities, ocular hypertelorism, pulmonary stenosis, abnormal genitalia, retardation of growth, and sensorineural deafness) syndrome. In 2005, we discovered Harvey‐RAS (HRAS) germline mutations in patients with Costello syndrome. This discovery provided a clue to identification of germline mutations in Kirsten‐RAS (KRAS), BRAF and mitogen‐activated protein kinase kinase 1 and 2 (MAP2K1/MAP2K2) in patients with CFC syndrome. These genes encode molecules in the RAS/RAF/MEK/extracellular signal‐regulated kinase (ERK) pathway, leading to a new concept that clinically related disorders, i.e., Noonan, Costello, and CFC syndromes are caused by dysregulation of the RAS/mitogen activated protein kinase (MAPK) pathway. In the present review, we summarize mutations in HRAS, KRAS, BRAF, MAP2K1/2, and PTPN11, the phenotypes of patients with these mutations, the functional properties of mutants and animal models. Finally we suggest that disorders with mutations of molecules in the RAS/MAPK cascade (Noonan, LEOPARD, Costello, and CFC syndromes and neurofibromatosis type I) may be comprehensively termed “the RAS/MAPK syndromes.” Details on mutations will be updated in the RAS/MAPK Syndromes Homepage (www.medgen.med.tohoku.ac.jp/RasMapk syndromes.html). Hum Mutat 0, 1–15, 2008.


Journal of Human Genetics | 2011

A genome-wide association study identifies RNF213 as the first Moyamoya disease gene.

Fumiaki Kamada; Yoko Aoki; Ayumi Narisawa; Yu Abe; Shoko Komatsuzaki; Atsuo Kikuchi; Junko Kanno; Tetsuya Niihori; Masao Ono; Naoto Ishii; Yuji Owada; Miki Fujimura; Yoichi Mashimo; Yoichi Suzuki; Akira Hata; Shigeru Tsuchiya; Teiji Tominaga; Yoichi Matsubara; Shigeo Kure

Moyamoya disease (MMD) shows progressive cerebral angiopathy characterized by bilateral internal carotid artery stenosis and abnormal collateral vessels. Although ∼15% of MMD cases are familial, the MMD gene(s) remain unknown. A genome-wide association study of 785 720 single-nucleotide polymorphisms (SNPs) was performed, comparing 72 Japanese MMD patients with 45 Japanese controls and resulting in a strong association of chromosome 17q25-ter with MMD risk. This result was further confirmed by a locus-specific association study using 335 SNPs in the 17q25-ter region. A single haplotype consisting of seven SNPs at the RNF213 locus was tightly associated with MMD (P=5.3 × 10−10). RNF213 encodes a really interesting new gene finger protein with an AAA ATPase domain and is abundantly expressed in spleen and leukocytes. An RNA in situ hybridization analysis of mouse tissues indicated that mature lymphocytes express higher levels of Rnf213 mRNA than their immature counterparts. Mutational analysis of RNF213 revealed a founder mutation, p.R4859K, in 95% of MMD families, 73% of non-familial MMD cases and 1.4% of controls; this mutation greatly increases the risk of MMD (P=1.2 × 10−43, odds ratio=190.8, 95% confidence interval=71.7–507.9). Three additional missense mutations were identified in the p.R4859K-negative patients. These results indicate that RNF213 is the first identified susceptibility gene for MMD.


Journal of Medical Genetics | 2007

Cardio-facio-cutaneous and Noonan syndromes due to mutations in the RAS/MAPK signalling pathway: genotype–phenotype relationships and overlap with Costello syndrome

Caroline Nava; Nadine Hanna; Caroline Michot; Sabrina Pereira; Nathalie Pouvreau; Tetsuya Niihori; Yoko Aoki; Yoichi Matsubara; Benoit Arveiler; Didier Lacombe; Eric Pasmant; Béatrice Parfait; Clarisse Baumann; Delphine Héron; Sabine Sigaudy; Annick Toutain; Marlène Rio; Alice Goldenberg; Bruno Leheup; Alain Verloes; Hélène Cavé

Cardio-facio-cutaneous (CFC) syndrome, Noonan syndrome (NS), and Costello syndrome (CS) are clinically related developmental disorders that have been recently linked to mutations in the RAS/MEK/ERK signalling pathway. This study was a mutation analysis of the KRAS, BRAF, MEK1 and MEK2 genes in a total of 130 patients (40 patients with a clinical diagnosis of CFC, 20 patients without HRAS mutations from the French Costello family support group, and 70 patients with NS without PTPN11 or SOS1 mutations). BRAF mutations were found in 14/40 (35%) patients with CFC and 8/20 (40%) HRAS-negative patients with CS. KRAS mutations were found in 1/40 (2.5%) patients with CFC, 2/20 (10%) HRAS-negative patients with CS and 4/70 patients with NS (5.7%). MEK1 mutations were found in 4/40 patients with CFC (10%), 4/20 (20%) HRAS-negative patients with CS and 3/70 (4.3%) patients with NS, and MEK2 mutations in 4/40 (10%) patients with CFC. Analysis of the major phenotypic features suggests significant clinical overlap between CS and CFC. The phenotype associated with MEK mutations seems less severe, and is compatible with normal mental development. Features considered distinctive for CS were also found to be associated with BRAF or MEK mutations. Because of its particular cancer risk, the term “Costello syndrome” should only be used for patients with proven HRAS mutation. These results confirm that KRAS is a minor contributor to NS and show that MEK is involved in some cases of NS, demonstrating a phenotypic continuum between the clinical entities. Although some associated features appear to be characteristic of a specific gene, no simple rule exists to distinguish NS from CFC easily.


American Journal of Medical Genetics Part A | 2006

HRAS mutation analysis in Costello syndrome: Genotype and phenotype correlation

Karen W. Gripp; Angela E. Lin; Deborah L. Stabley; Linda Nicholson; Charles I. Scott; Daniel Doyle; Yoko Aoki; Yoichi Matsubara; Elaine H. Zackai; Pablo Lapunzina; Antonio González-Meneses; Jennifer Holbrook; Cynthia A. Agresta; Iris L. Gonzalez; Katia Sol-Church

Costello syndrome is a rare condition comprising mental retardation, distinctive facial appearance, cardiovascular abnormalities (typically pulmonic stenosis, hypertrophic cardiomyopathy, and/or atrial tachycardia), tumor predisposition, and skin and musculoskeletal abnormalities. Recently mutations in HRAS were identified in 12 Japanese and Italian patients with clinical information available on 7 of the Japanese patients. To expand the molecular delineation of Costello syndrome, we performed mutation analysis in 34 North American and 6 European (total 40) patients with Costello syndrome, and detected missense mutations in HRAS in 33 (82.5%) patients. All mutations affected either codon 12 or 13 of the protein product, with G12S occurring in 30 (90.9%) patients of the mutation‐positive cases. In two patients, we found a mutation resulting in an alanine substitution in position 12 (G12A), and in one patient, we detected a novel mutation (G13C). Five different HRAS mutations have now been reported in Costello syndrome, however genotype–phenotype correlation remains incomplete.


American Journal of Human Genetics | 2013

Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome.

Yoko Aoki; Tetsuya Niihori; Toshihiro Banjo; Nobuhiko Okamoto; Seiji Mizuno; Kenji Kurosawa; Tsutomu Ogata; Fumio Takada; Michihiro Yano; Toru Ando; Tadataka Hoshika; Christopher Barnett; Hirofumi Ohashi; Hiroshi Kawame; Tomonobu Hasegawa; Takahiro Okutani; Tatsuo Nagashima; Satoshi Hasegawa; Ryo Funayama; Takeshi Nagashima; Keiko Nakayama; Shin-ichi Inoue; Yusuke Watanabe; Toshihiko Ogura; Yoichi Matsubara

RAS GTPases mediate a wide variety of cellular functions, including cell proliferation, survival, and differentiation. Recent studies have revealed that germline mutations and mosaicism for classical RAS mutations, including those in HRAS, KRAS, and NRAS, cause a wide spectrum of genetic disorders. These include Noonan syndrome and related disorders (RAS/mitogen-activated protein kinase [RAS/MAPK] pathway syndromes, or RASopathies), nevus sebaceous, and Schimmelpenning syndrome. In the present study, we identified a total of nine missense, nonsynonymous mutations in RIT1, encoding a member of the RAS subfamily, in 17 of 180 individuals (9%) with Noonan syndrome or a related condition but with no detectable mutations in known Noonan-related genes. Clinical manifestations in the RIT1-mutation-positive individuals are consistent with those of Noonan syndrome, which is characterized by distinctive facial features, short stature, and congenital heart defects. Seventy percent of mutation-positive individuals presented with hypertrophic cardiomyopathy; this frequency is high relative to the overall 20% incidence in individuals with Noonan syndrome. Luciferase assays in NIH 3T3 cells showed that five RIT1 alterations identified in children with Noonan syndrome enhanced ELK1 transactivation. The introduction of mRNAs of mutant RIT1 into 1-cell-stage zebrafish embryos was found to result in a significant increase of embryos with craniofacial abnormalities, incomplete looping, a hypoplastic chamber in the heart, and an elongated yolk sac. These results demonstrate that gain-of-function mutations in RIT1 cause Noonan syndrome and show a similar biological effect to mutations in other RASopathy-related genes.


Journal of Human Genetics | 2016

Recent advances in RASopathies

Yoko Aoki; Tetsuya Niihori; Shin-Ichi Inoue; Yoichi Matsubara

RASopathies or RAS/mitogen-activated protein kinase (MAPK) syndromes are a group of phenotypically overlapping syndromes caused by germline mutations that encode components of the RAS/MAPK signaling pathway. These disorders include neurofibromatosis type I, Legius syndrome, Noonan syndrome, Noonan syndrome with multiple lentigines (formerly called LEOPARD syndrome), Costello syndrome, cardiofaciocutaneous (CFC) syndrome, Noonan-like syndrome, hereditary gingival fibromatosis and capillary malformation–arteriovenous malformation. Recently, novel gene variants, including RIT1, RRAS, RASA2, A2ML1, SOS2 and LZTR1, have been shown to be associated with RASopathies, further expanding the disease entity. Although further analysis will be needed, these findings will help to better elucidate an understanding of the pathogenesis of these disorders and will aid in the development of potential therapeutic approaches. In this review, we summarize the novel genes that have been reported to be associated with RASopathies and highlight the cardiovascular abnormalities that may arise in affected individuals.


Journal of Human Genetics | 2005

Functional analysis of PTPN11/SHP-2 mutants identified in Noonan syndrome and childhood leukemia

Tetsuya Niihori; Yoko Aoki; Hirofumi Ohashi; Kenji Kurosawa; Tatsuro Kondoh; Satoshi Ishikiriyama; Hiroshi Kawame; Hotaka Kamasaki; Tsutomu Yamanaka; Fumio Takada; Kimio Nishio; Masahiro Sakurai; Hiroshi Tamai; Tatsuro Nagashima; Yoichi Suzuki; Shigeo Kure; Kunihiro Fujii; Masue Imaizumi; Yoichi Matsubara

AbstractNoonan syndrome (NS) is characterized by short stature, characteristic facial features, and heart defects. Recently, missense mutations of PTPN11, the gene encoding protein tyrosine phosphatase (PTP) SHP-2, were identified in patients with NS. Further, somatic mutations in PTPN11 were detected in childhood leukemia. Recent studies showed that the phosphatase activities of five mutations identified in NS and juvenile myelomonocytic leukemia (JMML) were increased. However, the functional properties of the other mutations remain unidentified. In this study, in order to clarify the differences between the mutations identified in NS and leukemia, we examined the phosphatase activity of 14 mutants of SHP-2. We identified nine mutations, including a novel F71I mutation, in 16 of 41 NS patients and two mutations, including a novel G503V mutation, in three of 29 patients with leukemia. Immune complex phosphatase assays of individual mutants transfected in COS7 cells showed that ten mutants identified in NS and four mutants in leukemia showed 1.4-fold to 12.7-fold increased activation compared with wild-type SHP-2. These results suggest that the pathogenesis of NS and leukemia is associated with enhanced phosphatase activity of mutant SHP-2. A comparison of the phosphatase activity in each mutant and a review of previously reported cases showed that high phosphatase activity observed in mutations at codons 61, 71, 72, and 76 was significantly associated with leukemogenesis.


American Journal of Medical Genetics Part A | 2007

Molecular and clinical characterization of cardio-facio-cutaneous (CFC) syndrome: overlapping clinical manifestations with Costello syndrome.

Yoko Narumi; Yoko Aoki; Tetsuya Niihori; Giovanni Neri; Hélène Cavé; Alain Verloes; Caroline Nava; Maria Ines Kavamura; Nobuhiko Okamoto; Kenji Kurosawa; Raoul C. M. Hennekam; Louise C. Wilson; Gabriele Gillessen-Kaesbach; Dagmar Wieczorek; Pablo Lapunzina; Hirofumi Ohashi; Yoshio Makita; Ikuko Kondo; Shigeru Tsuchiya; Etsuro Ito; Kiyoko Sameshima; Kumi Kato; Shigeo Kure; Yoichi Matsubara

Cardio‐facio‐cutaneous (CFC) syndrome is a multiple congenital anomaly/mental retardation syndrome characterized by heart defects, a distinctive facial appearance, ectodermal abnormalities and mental retardation. Clinically, it overlaps with both Noonan syndrome and Costello syndrome, which are caused by mutations in two genes, PTPN11 and HRAS, respectively. Recently, we identified mutations in KRAS and BRAF in 19 of 43 individuals with CFC syndrome, suggesting that dysregulation of the RAS/RAF/MEK/ERK pathway is a molecular basis for CFC syndrome. The purpose of this study was to perform comprehensive mutation analysis in 56 patients with CFC syndrome and to investigate genotype–phenotype correlation. We analyzed KRAS, BRAF, and MAP2K1/2 (MEK1/2) in 13 new CFC patients and identified five BRAF and one MAP2K1 mutations in nine patients. We detected one MAP2K1 mutation in three patients and four new MAP2K2 mutations in four patients out of 24 patients without KRAS or BRAF mutations in the previous study [Niihori et al., 2006 ]. No mutations were identified in MAPK3/1 (ERK1/2) in 21 patients without any mutations. In total, 35 of 56 (62.5%) patients with CFC syndrome had mutations (3 in KRAS, 24 in BRAF, and 8 in MAP2K1/2). No significant differences in clinical manifestations were found among 3 KRAS‐positive patients, 16 BRAF‐positive patients, and 6 MAP2K1/2‐positive patients. Wrinkled palms and soles, hyperpigmentation and joint hyperextension, which have been commonly reported in Costello syndrome but not in CFC syndrome, were observed in 30–40% of the mutation‐positive CFC patients, suggesting a significant clinical overlap between these two syndromes.

Collaboration


Dive into the Yoko Aoki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuhiko Okamoto

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge