Fusao Motoyoshi
Okayama University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fusao Motoyoshi.
Molecular Genetics and Genomics | 1997
S. Ohshima; Minoru Murata; Wataru Sakamoto; Yutaka Ogura; Fusao Motoyoshi
Abstract The Arabidopsis gene Terminal Flower 1 (TFL1) controls inflorescence meristem identity. A terminal flower (tfl1) mutant, which develops a terminal flower at the apex of the inflorescence, was induced by transformation with T-DNA. Using a plant DNA fragment flanking the integrated T-DNA as a probe, a clone was selected from a wild-type genomic library. Comparative sequence analysis of this clone with an EST clone (129D7T7) suggested the existence of a gene encoding a protein similar to that encoded by the cen gene which controls inflorescence meristem identity in Antirrhinum. Nucleotide sequences of the region homologous to this putative TFL1 gene were compared between five chemically induced tfl1 mutants and their parental wild-type ecotypes. Every mutant was found to have a nucleotide substitution which could be responsible for the tfl1 phenotype. This result confirmed that the cloned gene is TFL1 itself. In our tfl1 mutant, no nucleotide substitution was found in the transcribed region of the gene, and the T-DNA-insertion site was located at 458 bp downstream of the putative polyadenylation signal, suggesting that an element important for expression of the TFL1 gene exists in this area.
The Plant Cell | 1999
J. S. Heslop-Harrison; Minoru Murata; Yutaka Ogura; Trude Schwarzacher; Fusao Motoyoshi
A highly abundant repetitive DNA sequence family of Arabidopsis, AtCon, is composed of 178-bp tandemly repeated units and is located at the centromeres of all five chromosome pairs. Analysis of multiple copies of AtCon showed 95% conservation of nucleotides, with some alternative bases, and revealed two boxes, 30 and 24 bp long, that are 99% conserved. Sequences at the 3′ end of these boxes showed similarity to yeast CDEI and human CENP-B DNA–protein binding motifs. When oligonucleotides from less conserved regions of AtCon were hybridized in situ and visualized by using primer extension, they were detected on specific chromosomes. When used for polymerase chain reaction with genomic DNA, single primers or primer pairs oriented in the same direction showed negligible amplification, indicating a head-to-tail repeat unit organization. Most primer pairs facing in opposite directions gave several strong bands corresponding to their positions within AtCon. However, consistent with the primer extension results, some primer pairs showed no amplification, indicating that there are chromosome-specific variants of AtCon. The results are significant because they elucidate the organization, mode of amplification, dispersion, and evolution of one of the major repeated sequence families of Arabidopsis. The evidence presented here suggests that AtCon, like human α satellites, plays a role in Arabidopsis centromere organization and function.
The Plant Cell | 1996
Wataru Sakamoto; Hideki Kondo; Minoru Murata; Fusao Motoyoshi
Chloroplast mutator (chm) of Arabidopsis is a recessive nuclear mutation that causes green and white variegation in leaves and is inherited in a non-Mendelian fashion. In this study, we have identified and characterized a mutant observed in F1 and backcrossed BC1 populations from a cross between chm1-3 and ecotype Columbia. This mutant, maternal distorted leaf (MDL), grows very poorly and is distinguished by distorted rough leaves and aborted flowering organs. Electron microscopic observation showed that in MDL plants, a significant portion of mitochondria are abnormal and appear to be nonfunctional. DNA gel blot and sequence analysis of the MDL mitochondrial DNA (mtDNA) revealed rearrangements in two mtDNA fragments associated with rps3-rpl16 genes (encoding ribosomal proteins S3 and L16, respectively). One rearrangement resulted in the insertion of the rps3-rpl16 operon downstream of atp9. An independent deletion in this region had eliminated the majority of rps3. In contrast, another rearrangement deleted part of rpl16, whereas rps3 remained intact. RNA gel blot analysis indicated that expression of these genes is also altered as a consequence of the mtDNA rearrangements. Thus, a mutation at the CHM locus affects mitochondrial gene expression, and impaired mitochondrial function may result in the distorted phenotype.
Genes to Cells | 2001
Naozumi Mimida; Koji Goto; Yasushi Kobayashi; Takashi Araki; Ji Hoon Ahn; Detlef Weigel; Minoru Murata; Fusao Motoyoshi; Wataru Sakamoto
The TERMINAL FLOWER 1 (TFL1) gene of Arabidopsis plays an important role in regulating flowering time and in maintaining the fate of inflorescence meristem (IM). TFL1 is a homologue of CENTRORADIALIS (CEN) from Antirrhinum, which is only involved in IM maintenance. Recent mutational studies and the genome project revealed that TFL1 belongs to a small gene family in Arabidopsis, in which functional divergence may have occurred among the members.
Theoretical and Applied Genetics | 1996
T. Ohmori; Minoru Murata; Fusao Motoyoshi
We have cloned and sequenced six RAPD fragments tightly linked to the Tm-1 gene which confers tomato mosaic virus (ToMV) resistance in tomato. The terminal ten bases in each of these clones exactly matched the sequence of the primer for amplifying the corresponding RAPD marker, except for one in which the 5′-endmost two nucleotides were different from those of the primer. These RAPD clones did not cross-hybridize with each other, suggesting that they were derived from different loci. From Southern-hybridization experiments, five out of the six RAPD clones were estimated to be derived from middle- or high-repetitive sequences, but not from any parts of the ribosomal RNA genes (rDNA), which are known to be tightly linked with the Tm-1 locus. The remaining clone appeared to be derived from a DNA family consisting of a few copies. These six RAPD fragments were converted to sequence characterized amplified region (SCAR) markers, each of which was detectable using a pair of primers having the same sequence as that at either end of the corresponding RAPD clone. All pairs of SCAR primers amplified distinct single bands whose sizes were the same as those of the RAPD clones. In four cases, the SCAR markers were present in the line with Tm-1 but absent in the line without it, as were the corresponding RAPD markers. In the two other cases, the products of the same size were amplified in both lines. When these SCAR products were digested with different restriction endonucleases which recognize 4-bp sequences, however, polymorphisms in fragment length were found between the two lines. These co-dominant markers are useful for differentiating heterozygotes from both types of homozygote.
Plant Molecular Biology | 1998
Shigeko Utsugi; Wataru Sakamoto; Minoru Murata; Fusao Motoyoshi
We have previously identified two cDNAs encoding vegetative storage proteins (VSPs) in Arabidopsis thaliana. Unlike soybean in which VSPs accumulate at high levels in leaves, A. thaliana VSP mRNAs are abundant in flowers. To understand tissue-specific expression and possible roles of VSPs on reproductive organ development, genes corresponding to VSPs (Vsp1 and Vsp2) and their putative promoters were characterized in this study. Genomic sequence analysis revealed that Vsp1 and Vsp2 resemble each other except in their introns, and that these two genes were organized in a tandem array with an interval of 6 kb in a region. The expression patterns of Vsp1 and Vsp2 were examined using transgenic A. thaliana plants carrying a promoter from Vsp1 or Vsp2 fused to a bacterial β-glucuronidase (GUS) reporter gene. The promoter from Vsp1 expressed its effect in gynoecia, especially in styles, the basal and distal ends of ovaries and in siliques, whereas the promoter from Vsp2 showed its activity in vegetative shoots, petioles, peduncles and receptacles of floral organs. These results suggest that expression of Vsp1 and Vsp2 may be developmentally regulated in A. thaliana. In the transgenic plants, the GUS activity was induced by wounding in an area around the mid-rib of leaves. Therefore, Vsp1 and Vsp2 promoters appear to have elements required for both tissue specificity and wounding.
Archives of Virology | 2000
S.-H. Tan; Masamichi Nishiguchi; Minoru Murata; Fusao Motoyoshi
Summary. The genome of the Y strain of kyuri green mottle mosaic virus (KGMMV-Y) has been completely sequenced. Its genomic structure and sequence show it to be a typical tobamovirus, that is closest to, but distinct from, that of cucumber green mottle mosaic tobamovirus (CGMMV). The genomic sequence of KGMMV-Y was compared in detail with that of the SH strain of CGMMV. The sequences of their 5′- and 3′-untranslated regions were 74% and 63% identical. The amino acid sequences of the shorter and longer (read through) RNA replicase components, movement protein (MP) and coat protein (CP) were 58, 58. 60 and 46% identical, respectively. The KGMMV-Y genome sequence was also compared partly to that of another strain of KGMMV, KGMMV-C. The CP sequences of KGMMV-Y and KGMMV-C differed by 20 amino acid residues, suggesting that their relationship is more distant than the relationship between CGMMV-SH and CGMMV-W whose CP sequences are identical. The MPs of KGMMV-Y and KGMMV-C, however, differ only by one amino acid residue, although three amino acid substitutions are present in the MPs between CGMMV-SH and CGMMV-W. Two long stretches, one in the RNA replicase and the other in the MP, were highly conserved in KGMMV and CGMMV.
Theoretical and Applied Genetics | 2000
Sobir; T. Ohmori; Minoru Murata; Fusao Motoyoshi
Abstract The Tm-2 gene and its alleles conferring tomato mosaic virus resistance in tomato originate from Lycopersicon peruvianum, a wild relative of tomato. DNA fragments of several RAPD markers tightly linked with the Tm-2 locus in tomato were successfully cloned and sequenced. Subsequently, the 24-mer oligonucleotide primer pairs of the SCAR markers corresponding to the RAPD markers were designed based on the 5’-endmost sequences. A fragment of the same size as that of a SCAR marker was amplified in the ToMV-susceptible tomato line with no Tm-2, but the digests of the PCR fragments by AccI exhibited polymorphism in fragment length between the two lines. We chose three SCAR markers and three RAPD markers tightly linked with the Tm-2 locus, and examined whether the same-sized fragments corresponding to these markers were also present in three other lines carrying Tm-2a or one of the other Tm-2 alleles. The fragments corresponding to the three SCAR markers were present in all of the three lines, but the other markers (three RAPDs ) were absent in one or two lines, suggesting that the three SCAR markers are closer to Tm-2 than the other markers. Comparison of the nucleotide sequences of these fragments revealed that they are all homologous to the corresponding SCAR markers.
Theoretical and Applied Genetics | 1998
T. Ohmori; Minoru Murata; Fusao Motoyoshi
We examined near-isogenic lines (NILs) carrying either of the tomato mosaic virus (ToMV) resistance genes Tm-1 and Tm-2 for sequences homologous to the isolated disease-resistance genes. DNA fragments were amplified from the genomic DNA of the NILs by the polymerase chain reaction (PCR) using primers designed on the basis of sequences of certain domains conserved among some disease-resistance genes. Of ten PCR products cloned, five were identified as having homology to either of the two classes of disease-resistance genes. The first class encoded proteins containing leucine-rich repeats (LRRs) and a nucleotide-binding site (NBS), such as the RPS2 gene in Arabidopsis and the N gene in tobacco. The second class encoded proteins containing a C-terminal membrane anchor but no NBS, such as the Cf 2 and Cf 9 genes in tomato. In Southern hybridization of the genomic DNAs of the NILs carrying either Tm-1 or Tm-2 and their parental NIL carrying neither of these resistance genes, multiple bands could be detected with most of the clones used as probes. This suggests that the genomes of the NILs contain multiple copies of sequences homologous to some of the known disease-resistance genes. No evidence was obtained to show that the Tm-1 and/or Tm-2 loci encode either class of protein, since no polymorphic band patterns between the NILs were detected by Southern hybridization.
Theoretical and Applied Genetics | 1995
T. Ohmori; Minoru Murata; Fusao Motoyoshi
Tm-2 and Tm-2a are genes conferring resistance to tomato mosaic virus in Lycopersicon esculentum. They are allelic and originated from different lines of L. peruvianum, a wild relative of tomato. In this study, random amplified polymorphic DNA (RAPD) markers linked to these genes were screened in nearly isogenic lines (NILs). To detect RAPDs differentiating NILs, 220 different 10-base oligonucleotide primers were examined by the polymerase chain reaction (PCR), and 43 of them generated 53 consistent polymorphic fragments among the NILs. Out of these 53 fragments, 13 were arbitrarily chosen and examined in respect of whether they were linked to the netted virescent (nv) gene, since nv is tightly linked to the Tm-2 locus and its phenotype is more easily distinguishable. As a result, all 13 markers were shown to be linked to nv, and hence to the Tm-2 locus. Among them, two fragments specific to the NIL carrying Tm-2 three specific to the NIL carrying Tm-2a, and four specific to both of these NILs were closely linked to nv.