Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shigeko Utsugi is active.

Publication


Featured researches published by Shigeko Utsugi.


The Plant Cell | 2011

A Wheat Homolog of MOTHER OF FT AND TFL1 Acts in the Regulation of Germination

Shingo Nakamura; Fumitaka Abe; Hiroyuki Kawahigashi; Kou Nakazono; Akemi Tagiri; Takashi Matsumoto; Shigeko Utsugi; Taiichi Ogawa; Hirokazu Handa; Hiroki Ishida; Masahiko Mori; Kanako Kawaura; Yasunari Ogihara; Hideho Miura

Among the environmental signals affecting seed development, temperature is the most influential in the formation of seed dormancy in wheat. In this study, transcriptional profiling of the effects of temperature on seed dormancy formation identified MFT as a candidate gene for seed dormancy regulation. Seed dormancy is an adaptive mechanism and an important agronomic trait. Temperature during seed development strongly affects seed dormancy in wheat (Triticum aestivum) with lower temperatures producing higher levels of seed dormancy. To identify genes important for seed dormancy, we used a wheat microarray to analyze gene expression in embryos from mature seeds grown at lower and higher temperatures. We found that a wheat homolog of MOTHER OF FT AND TFL1 (MFT) was upregulated after physiological maturity in dormant seeds grown at the lower temperature. In situ hybridization analysis indicated that MFT was exclusively expressed in the scutellum and coleorhiza. Mapping analysis showed that MFT on chromosome 3A (MFT-3A) colocalized with the seed dormancy quantitative trait locus (QTL) QPhs.ocs-3A.1. MFT-3A expression levels in a dormant cultivar used for the detection of the QTL were higher after physiological maturity; this increased expression correlated with a single nucleotide polymorphism in the promoter region. In a complementation analysis, high levels of MFT expression were correlated with a low germination index in T1 seeds. Furthermore, precocious germination of isolated immature embryos was suppressed by transient introduction of MFT driven by the maize (Zea mays) ubiquitin promoter. Taken together, these results suggest that MFT plays an important role in the regulation of germination in wheat.


Molecular Genetics and Genomics | 2002

Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA

Yasunari Ogihara; Katsumi Isono; T. Kojima; A. Endo; Mitsumasa Hanaoka; Takashi Shiina; Toru Terachi; Shigeko Utsugi; Minoru Murata; Naoki Mori; Shigeo Takumi; Kazuho Ikeo; Takashi Gojobori; Rika Murai; Koji Murai; Yoshihiro Matsuoka; Y. Ohnishi; H. Tajiri; Koichiro Tsunewaki

Abstract. Structural features of the wheat plastome were clarified by comparison of the complete sequence of wheat chloroplast DNA with those of rice and maize chloroplast genomes. The wheat plastome consists of a 134,545-bp circular molecule with 20,703-bp inverted repeats and the same gene content as the rice and maize plastomes. However, some structural divergence was found even in the coding regions of genes. These alterations are due to illegitimate recombination between two short direct repeats and/or replication slippage. Overall comparison of chloroplast DNAs among the three cereals indicated the presence of some hot-spot regions for length mutations. Whereas the region with clustered tRNA genes and that downstream of rbcL showed divergence in a species-specific manner, the deletion patterns of ORFs in the inverted-repeat regions and the borders between the inverted repeats and the small single-copy region support the notion that wheat and rice are related more closely to each other than to maize.


Plant Molecular Biology | 1998

ARABIDOPSIS THALIANA VEGETATIVE STORAGE PROTEIN (VSP) GENES : GENE ORGANIZATION AND TISSUE-SPECIFIC EXPRESSION

Shigeko Utsugi; Wataru Sakamoto; Minoru Murata; Fusao Motoyoshi

We have previously identified two cDNAs encoding vegetative storage proteins (VSPs) in Arabidopsis thaliana. Unlike soybean in which VSPs accumulate at high levels in leaves, A. thaliana VSP mRNAs are abundant in flowers. To understand tissue-specific expression and possible roles of VSPs on reproductive organ development, genes corresponding to VSPs (Vsp1 and Vsp2) and their putative promoters were characterized in this study. Genomic sequence analysis revealed that Vsp1 and Vsp2 resemble each other except in their introns, and that these two genes were organized in a tandem array with an interval of 6 kb in a region. The expression patterns of Vsp1 and Vsp2 were examined using transgenic A. thaliana plants carrying a promoter from Vsp1 or Vsp2 fused to a bacterial β-glucuronidase (GUS) reporter gene. The promoter from Vsp1 expressed its effect in gynoecia, especially in styles, the basal and distal ends of ovaries and in siliques, whereas the promoter from Vsp2 showed its activity in vegetative shoots, petioles, peduncles and receptacles of floral organs. These results suggest that expression of Vsp1 and Vsp2 may be developmentally regulated in A. thaliana. In the transgenic plants, the GUS activity was induced by wounding in an area around the mid-rib of leaves. Therefore, Vsp1 and Vsp2 promoters appear to have elements required for both tissue specificity and wounding.


Plant Molecular Biology Reporter | 2000

Chinese spring wheat (Triticum aestivum L.) chloroplast genome: Complete sequence and contig clones

Yasunari Ogihara; Kazuriho Isono; Toshio Kojima; Akira Endo; Mitsumasa Hanaoka; Takashi Shiina; Toru Terachi; Shigeko Utsugi; Minoru Murata; Naoki Mori; Shigeo Takumi; Kazuho Ikeo; Takashi Gojobori; Rika Murai; Koji Murai; Yoshihiro Matsuoka; Yukari Ohnishi; Hikaru Tajiri; Koichiro Tsunewaki

Libraries of plasmid clones covering the entire chloroplast (cp) genome of the common wheat,Triticum aestivum cv. Chinese Spring were constructed and assembled into contig-clones. From these, we obtained the complete nucleotide sequence of wheat chloroplast DNA—a 134,540 bp circular DNA (DDBJ accession no. AB042240) containing four species of ribosomal RNA, 30 genes for 20 species of transfer RNA, and 71 protein coding genes. Additionally, we detected five unidentified open reading frames conserved among grasses. Plasmid clones are available on request.


Plant Molecular Biology | 1996

Isolation and characterization of cDNA clones corresponding to the genes expressed preferentially in floral organs of Arabidopsis thaliana

Shigeko Utsugi; Wataru Sakamoto; Yutaka Ogura; Minoru Murata; Fusao Motoyoshi

Seventeen cDNA clones of genes corresponding to mRNAs expressed preferentially in floral organs of Arabidopsis thaliana were obtained by differential screening of a flower bud cDNA library, and classified into five groups (1A, 17A, 1B, 4B and 5B) by cross-hybridization and restriction analysis. Sequence analysis revealed that the 1A-1 and 17A-1 clones encode vegetative storage proteins (VSPs). The VSP mRNAs were detected in a small amount in leaves and increased to a limited level by wounding. Both 1B-1 and 5B-1 clones were homologous to transmembrane protein cDNAs. The protein encoded by 4B-1 clone contained a proline-rich region, but no homologous proteins were found in databases.


Plant and Cell Physiology | 2015

Control of the Water Transport Activity of Barley HvTIP3;1 Specifically Expressed in Seeds

Shigeko Utsugi; Mineo Shibasaka; Masahiko Maekawa; Maki Katsuhara

Tonoplast intrinsic proteins (TIPs) are involved in the transport and storage of water, and control intracellular osmotic pressure by transporting material related to the water potential of cells. In the present study, we focused on HvTIP3;1 during the periods of seed development and desiccation in barley. HvTIP3;1 was specifically expressed in seeds. An immunochemical analysis showed that HvTIP3;1 strongly accumulated in the aleurone layers and outer layers of barley seeds. The water transport activities of HvTIP3;1 and HvTIP1;2, which also accumulated in seeds, were measured in the heterologous expression system of Xenopus oocytes. When they were expressed individually, HvTIP1;2 transported water, whereas HvTIP3;1 did not. However, HvTIP3;1 exhibited water transport activity when co-expressed with HvTIP1;2 in oocytes, and this activity was higher than when HvTIP1;2 was expressed alone. This is the first report to demonstrate that the water permeability of a TIP aquaporin was activated when co-expressed with another TIP. The split-yellow fluorescent protein (YFP) system in onion cells revealed that HvTIP3;1 interacted with HvTIP1;2 to form a heterotetramer in plants. These results suggest that HvTIP3;1 functions as an active water channel to regulate water movement through tissues during the periods of seed development and desiccation.


Breeding Science | 2003

Transient Expression of Anthocyanin in Developing Wheat Coleoptile by Maize C1 and B-peru Regulatory Genes for Anthocyanin Synthesis

Nisar Ahmed; Masahiko Maekawa; Shigeko Utsugi; Eiko Himi; Hador Ablet; Kazuhide Rikiishi; Kazuhiko Noda


Genes & Genetic Systems | 2008

Structural and functional properties of Viviparous1 genes in dormant wheat

Shigeko Utsugi; Shingo Nakamura; Kazuhiko Noda; Masahiko Maekawa


Journal of Cereal Science | 2006

The wheat Rc gene for red coleoptile colour codes for a transcriptional activator of late anthocyanin biosynthesis genes

Nisar Ahmed; Masahiko Maekawa; Shigeko Utsugi; Kazuhide Rikiishia; Aftab Ahmad; Kazuhiko Noda


Plant and Cell Physiology | 1999

Characterization of a Flower-Specific Gene Encoding a Putative Myrosinase Binding Protein in Arabidopsis thaliana

Katsuaki Takechi; Wataru Sakamoto; Shigeko Utsugi; Minoru Murata; Fusao Motoyoshi

Collaboration


Dive into the Shigeko Utsugi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuho Ikeo

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Koichiro Tsunewaki

Fukui Prefectural University

View shared research outputs
Top Co-Authors

Avatar

Koji Murai

Fukui Prefectural University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge