Fusheng Wei
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fusheng Wei.
PLOS Genetics | 2005
Fusheng Wei; Edward H. Coe; William Nelson; Arvind K. Bharti; Fred Engler; Ed Butler; HyeRan Kim; Jose Luis Goicoechea; Mingsheng Chen; Seunghee Lee; Galina Fuks; Hector Sanchez-Villeda; Steven A Schroeder; Zhiwei Fang; Michael S. McMullen; Georgia L. Davis; John E. Bowers; Andrew H. Paterson; Mary L. Schaeffer; Jack M. Gardiner; Karen C. Cone; Joachim Messing; Carol Soderlund; Rod A. Wing
Maize (Zea mays L.) is one of the most important cereal crops and a model for the study of genetics, evolution, and domestication. To better understand maize genome organization and to build a framework for genome sequencing, we constructed a sequence-ready fingerprinted contig-based physical map that covers 93.5% of the genome, of which 86.1% is aligned to the genetic map. The fingerprinted contig map contains 25,908 genic markers that enabled us to align nearly 73% of the anchored maize genome to the rice genome. The distribution pattern of expressed sequence tags correlates to that of recombination. In collinear regions, 1 kb in rice corresponds to an average of 3.2 kb in maize, yet maize has a 6-fold genome size expansion. This can be explained by the fact that most rice regions correspond to two regions in maize as a result of its recent polyploid origin. Inversions account for the majority of chromosome structural variations during subsequent maize diploidization. We also find clear evidence of ancient genome duplication predating the divergence of the progenitors of maize and rice. Reconstructing the paleoethnobotany of the maize genome indicates that the progenitors of modern maize contained ten chromosomes.
The Plant Cell | 2002
Fusheng Wei; Rod A. Wing; Roger P. Wise
Genes that confer defense against pathogens often are clustered in the genome and evolve via diverse mechanisms. To evaluate the organization and content of a major defense gene complex in cereals, we determined the complete sequence of a 261-kb BAC contig from barley cv Morex that spans the Mla (powdery mildew) resistance locus. Among the 32 predicted genes on this contig, 15 are associated with plant defense responses; 6 of these are associated with defense responses to powdery mildew disease but function in different signaling pathways. The Mla region is organized as three gene-rich islands separated by two nested complexes of transposable elements and a 45-kb gene-poor region. A heterochromatic-like region is positioned directly proximal to Mla and is composed of a gene-poor core with 17 families of diverse tandem repeats that overlap a hypermethylated, but transcriptionally active, gene-dense island. Paleontology analysis of long terminal repeat retrotransposons indicates that the present Mla region evolved over a period of >7 million years through a variety of duplication, inversion, and transposon-insertion events. Sequence-based recombination estimates indicate that R genes positioned adjacent to nested long terminal repeat retrotransposons, such as Mla, do not favor recombination as a means of diversification. We present a model for the evolution of the Mla region that encompasses several emerging features of large cereal genomes.
The Plant Cell | 2001
Fasong Zhou; Joachim Kurth; Fusheng Wei; Candace Elliott; Giampiero Valè; Nabila Yahiaoui; Beat Keller; Shauna Somerville; Roger P. Wise; Paul Schulze-Lefert
The barley Mla locus encodes 28 characterized resistance specificities to the biotrophic fungal pathogen barley powdery mildew. We describe a single-cell transient expression assay using entire cosmid DNAs to pinpoint Mla1 within the complex 240-kb Mla locus. The MLA1 cDNA encodes a 108-kD protein containing an N-terminal coiled-coil structure, a central nucleotide binding domain, and a C-terminal leucine-rich repeat region; it also contains a second short open reading frame at the 5′ end that has a possible regulatory function. Although most Mla-encoded resistance specificities require Rar1 for their function, we used the single-cell expression system to demonstrate that Mla1 triggers full resistance in the presence of the severely defective rar1-2 mutant allele. Wheat contains an ortholog of barley Mla, designated TaMla, that is tightly linked to (0.7 centimorgan) but distinct from a tested resistance specificity at the complex Pm3 locus to wheat powdery mildew. Thus, the most polymorphic powdery mildew resistance loci in barley and wheat may have evolved in parallel at two closely linked homeoloci. Barley Mla1 expressed in wheat using the single-cell transformation system failed to trigger a response to any of the wheat powdery mildew Avr genes tested, indicating that AvrMla1 is not genetically fixed in wheat mildew strains.
Plant Physiology | 2003
Dennis A. Halterman; Fusheng Wei; Roger P. Wise
In barley (Hordeum vulgare), theMla13 powdery mildew resistance gene confersRar1-dependent, AvrMla13-specific resistance to Blumeria graminis f. sp.hordei (Bgh). We have identified cDNA and genomic copies of Mla13 and used this coiled-coil nucleotide-binding site leucine-rich repeat protein-encoding gene as a model for the regulation of host resistance to obligate biotrophic fungi in cereals. We demonstrate quantitatively that a rapid increase in the accumulation of Mla transcripts and transcripts of the Mla-signaling genes, Rar1 andSgt1, is triggered between 16 and 20 h post inoculation, the same time frame that haustoria of avirulentBgh make contact with the host cell plasma membrane. An abundance of Mla13 cDNAs revealed five classes of transcript leader regions containing two alternatively spliced introns and up to three upstream open reading frames (uORFs). Alternative splicing of introns in the transcript leader region results in a different number of uORFs and variability in the size of uORF2. These results indicate that regulation of Mlatranscript accumulation is not constitutive and that induction is coordinately controlled by recognition-specific factors. The sudden increase in specific transcript levels could account for the rapid defense response phenotype conferred by Mla6 andMla13.
PLOS Genetics | 2009
Shiguo Zhou; Fusheng Wei; John Nguyen; Mike Bechner; Konstantinos Potamousis; Steve Goldstein; Louise Pape; Michael R. Mehan; Chris Churas; Shiran Pasternak; Dan Forrest; Roger P. Wise; Doreen Ware; Rod A. Wing; Michael S. Waterman; Miron Livny; David C. Schwartz
About 85% of the maize genome consists of highly repetitive sequences that are interspersed by low-copy, gene-coding sequences. The maize community has dealt with this genomic complexity by the construction of an integrated genetic and physical map (iMap), but this resource alone was not sufficient for ensuring the quality of the current sequence build. For this purpose, we constructed a genome-wide, high-resolution optical map of the maize inbred line B73 genome containing >91,000 restriction sites (averaging 1 site/∼23 kb) accrued from mapping genomic DNA molecules. Our optical map comprises 66 contigs, averaging 31.88 Mb in size and spanning 91.5% (2,103.93 Mb/∼2,300 Mb) of the maize genome. A new algorithm was created that considered both optical map and unfinished BAC sequence data for placing 60/66 (2,032.42 Mb) optical map contigs onto the maize iMap. The alignment of optical maps against numerous data sources yielded comprehensive results that proved revealing and productive. For example, gaps were uncovered and characterized within the iMap, the FPC (fingerprinted contigs) map, and the chromosome-wide pseudomolecules. Such alignments also suggested amended placements of FPC contigs on the maize genetic map and proactively guided the assembly of chromosome-wide pseudomolecules, especially within complex genomic regions. Lastly, we think that the full integration of B73 optical maps with the maize iMap would greatly facilitate maize sequence finishing efforts that would make it a valuable reference for comparative studies among cereals, or other maize inbred lines and cultivars.
PLOS Genetics | 2009
Fusheng Wei; Jianwei Zhang; Shiguo Zhou; Ruifeng He; Mary L. Schaeffer; Kristi Collura; David Kudrna; Ben P. Faga; Marina Wissotski; Wolfgang Golser; Susan Rock; Tina Graves; Robert S. Fulton; Edward H. Coe; David C. Schwartz; Doreen Ware; Sandra W. Clifton; Richard Wilson; Rod A. Wing
Maize is a major cereal crop and an important model system for basic biological research. Knowledge gained from maize research can also be used to genetically improve its grass relatives such as sorghum, wheat, and rice. The primary objective of the Maize Genome Sequencing Consortium (MGSC) was to generate a reference genome sequence that was integrated with both the physical and genetic maps. Using a previously published integrated genetic and physical map, combined with in-coming maize genomic sequence, new sequence-based genetic markers, and an optical map, we dynamically picked a minimum tiling path (MTP) of 16,910 bacterial artificial chromosome (BAC) and fosmid clones that were used by the MGSC to sequence the maize genome. The final MTP resulted in a significantly improved physical map that reduced the number of contigs from 721 to 435, incorporated a total of 8,315 mapped markers, and ordered and oriented the majority of FPC contigs. The new integrated physical and genetic map covered 2,120 Mb (93%) of the 2,300-Mb genome, of which 405 contigs were anchored to the genetic map, totaling 2,103.4 Mb (99.2% of the 2,120 Mb physical map). More importantly, 336 contigs, comprising 94.0% of the physical map (∼1,993 Mb), were ordered and oriented. Finally we used all available physical, sequence, genetic, and optical data to generate a golden path (AGP) of chromosome-based pseudomolecules, herein referred to as the B73 Reference Genome Sequence version 1 (B73 RefGen_v1).
Plant Physiology | 2005
William Nelson; Arvind K. Bharti; Ed Butler; Fusheng Wei; Galina Fuks; HyeRan Kim; Rod A. Wing; Joachim Messing; Carol Soderlund
Fluorescent-based high-information-content fingerprinting (HICF) techniques have recently been developed for physical mapping. These techniques make use of automated capillary DNA sequencing instruments to enable both high-resolution and high-throughput fingerprinting. In this article, we report the construction of a whole-genome HICF FPC map for maize (Zea mays subsp. mays cv B73), using a variant of HICF in which a type IIS restriction enzyme is used to generate the fluorescently labeled fragments. The HICF maize map was constructed from the same three maize bacterial artificial chromosome libraries as previously used for the whole-genome agarose FPC map, providing a unique opportunity for direct comparison of the agarose and HICF methods; as a result, it was found that HICF has substantially greater sensitivity in forming contigs. An improved assembly procedure is also described that uses automatic end-merging of contigs to reduce the effects of contamination and repetitive bands. Several new features in FPC v7.2 are presented, including shared-memory multiprocessing, which allows dramatically faster assemblies, and automatic end-merging, which permits more accurate assemblies. It is further shown that sequenced clones may be digested in silico and located accurately on the HICF assembly, despite size deviations that prevent the precise prediction of experimental fingerprints. Finally, repetitive bands are isolated, and their effect on the assembly is studied.
PLOS Genetics | 2009
Fusheng Wei; Joshua C. Stein; Chengzhi Liang; Jianwei Zhang; Robert S. Fulton; Regina S. Baucom; Emanuele De Paoli; Shiguo Zhou; Lixing Yang; Yujun Han; Shiran Pasternak; Apurva Narechania; Lifang Zhang; Cheng-Ting Yeh; Kai Ying; Dawn Holligan Nagel; Kristi Collura; David Kudrna; Jennifer Currie; Jinke Lin; Hye Ran Kim; Angelina Angelova; Gabriel Scara; Marina Wissotski; Wolfgang Golser; Laura Courtney; Scott S. Kruchowski; Tina Graves; Susan Rock; Stephanie Adams
Most of our understanding of plant genome structure and evolution has come from the careful annotation of small (e.g., 100 kb) sequenced genomic regions or from automated annotation of complete genome sequences. Here, we sequenced and carefully annotated a contiguous 22 Mb region of maize chromosome 4 using an improved pseudomolecule for annotation. The sequence segment was comprehensively ordered, oriented, and confirmed using the maize optical map. Nearly 84% of the sequence is composed of transposable elements (TEs) that are mostly nested within each other, of which most families are low-copy. We identified 544 gene models using multiple levels of evidence, as well as five miRNA genes. Gene fragments, many captured by TEs, are prevalent within this region. Elimination of gene redundancy from a tetraploid maize ancestor that originated a few million years ago is responsible in this region for most disruptions of synteny with sorghum and rice. Consistent with other sub-genomic analyses in maize, small RNA mapping showed that many small RNAs match TEs and that most TEs match small RNAs. These results, performed on ∼1% of the maize genome, demonstrate the feasibility of refining the B73 RefGen_v1 genome assembly by incorporating optical map, high-resolution genetic map, and comparative genomic data sets. Such improvements, along with those of gene and repeat annotation, will serve to promote future functional genomic and phylogenomic research in maize and other grasses.
Genome Biology | 2008
Fusheng Wei; Rod A. Wing
The draft genome sequence of a transgenic virus-resistant papaya marks the first genome sequence of a commercially important transgenic crop plant.
Proceedings of the National Academy of Sciences of the United States of America | 2004
Joachim Messing; Arvind K. Bharti; Wojciech M. Karlowski; Heidrun Gundlach; Hye Ran Kim; Yeisoo Yu; Fusheng Wei; Galina Fuks; Carol Soderlund; Klaus F. X. Mayer; Rod A. Wing