Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fuyong Xing is active.

Publication


Featured researches published by Fuyong Xing.


IEEE Transactions on Biomedical Engineering | 2012

Robust Segmentation of Overlapping Cells in Histopathology Specimens Using Parallel Seed Detection and Repulsive Level Set

Xin Qi; Fuyong Xing; David J. Foran; Lin Yang

Automated image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of breast cancer. Automated segmentation of the cells comprising imaged tissue microarrays (TMAs) is a prerequisite for any subsequent quantitative analysis. Unfortunately, crowding and overlapping of cells present significant challenges for most traditional segmentation algorithms. In this paper, we propose a novel algorithm that can reliably separate touching cells in hematoxylin-stained breast TMA specimens that have been acquired using a standard RGB camera. The algorithm is composed of two steps. It begins with a fast, reliable object center localization approach that utilizes single-path voting followed by mean-shift clustering. Next, the contour of each cell is obtained using a level set algorithm based on an interactive model. We compared the experimental results with those reported in the most current literature. Finally, performance was evaluated by comparing the pixel-wise accuracy provided by human experts with that produced by the new automated segmentation algorithm. The method was systematically tested on 234 image patches exhibiting dense overlap and containing more than 2200 cells. It was also tested on whole slide images including blood smears and TMAs containing thousands of cells. Since the voting step of the seed detection algorithm is well suited for parallelization, a parallel version of the algorithm was implemented using graphic processing units (GPU) that resulted in significant speedup over the C/C++ implementation.


IEEE Transactions on Medical Imaging | 2016

An Automatic Learning-Based Framework for Robust Nucleus Segmentation

Fuyong Xing; Yuanpu Xie; Lin Yang

Computer-aided image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of diseases such as brain tumor, pancreatic neuroendocrine tumor (NET), and breast cancer. Automated nucleus segmentation is a prerequisite for various quantitative analyses including automatic morphological feature computation. However, it remains to be a challenging problem due to the complex nature of histopathology images. In this paper, we propose a learning-based framework for robust and automatic nucleus segmentation with shape preservation. Given a nucleus image, it begins with a deep convolutional neural network (CNN) model to generate a probability map, on which an iterative region merging approach is performed for shape initializations. Next, a novel segmentation algorithm is exploited to separate individual nuclei combining a robust selection-based sparse shape model and a local repulsive deformable model. One of the significant benefits of the proposed framework is that it is applicable to different staining histopathology images. Due to the feature learning characteristic of the deep CNN and the high level shape prior modeling, the proposed method is general enough to perform well across multiple scenarios. We have tested the proposed algorithm on three large-scale pathology image datasets using a range of different tissue and stain preparations, and the comparative experiments with recent state of the arts demonstrate the superior performance of the proposed approach.


Medical Image Analysis | 2015

High-throughput histopathological image analysis via robust cell segmentation and hashing

Xiaofan Zhang; Fuyong Xing; Hai Su; Lin Yang; Shaoting Zhang

Computer-aided diagnosis of histopathological images usually requires to examine all cells for accurate diagnosis. Traditional computational methods may have efficiency issues when performing cell-level analysis. In this paper, we propose a robust and scalable solution to enable such analysis in a real-time fashion. Specifically, a robust segmentation method is developed to delineate cells accurately using Gaussian-based hierarchical voting and repulsive balloon model. A large-scale image retrieval approach is also designed to examine and classify each cell of a testing image by comparing it with a massive database, e.g., half-million cells extracted from the training dataset. We evaluate this proposed framework on a challenging and important clinical use case, i.e., differentiation of two types of lung cancers (the adenocarcinoma and squamous carcinoma), using thousands of lung microscopic tissue images extracted from hundreds of patients. Our method has achieved promising accuracy and running time by searching among half-million cells .


medical image computing and computer assisted intervention | 2015

Beyond Classification: Structured Regression for Robust Cell Detection Using Convolutional Neural Network

Yuanpu Xie; Fuyong Xing; Xiangfei Kong; Hai Su; Lin Yang

Robust cell detection serves as a critical prerequisite for many biomedical image analysis applications. In this paper, we present a novel convolutional neural network (CNN) based structured regression model, which is shown to be able to handle touching cells, inhomogeneous background noises, and large variations in sizes and shapes. The proposed method only requires a few training images with weak annotations (just one click near the center of the object). Given an input image patch, instead of providing a single class label like many traditional methods, our algorithm will generate the structured outputs (referred to as proximity patches). These proximity patches, which exhibit higher values for pixels near cell centers, will then be gathered from all testing image patches and fused to obtain the final proximity map, where the maximum positions indicate the cell centroids. The algorithm is tested using three data sets representing different image stains and modalities. The comparative experiments demonstrate the superior performance of this novel method over existing state-of-the-art.


medical image computing and computer assisted intervention | 2015

Robust Cell Detection and Segmentation in Histopathological Images Using Sparse Reconstruction and Stacked Denoising Autoencoders

Hai Su; Fuyong Xing; Xiangfei Kong; Yuanpu Xie; Shaoting Zhang; Lin Yang

Computer-aided diagnosis (CAD) is a promising tool for accurate and consistent diagnosis and prognosis. Cell detection and segmentation are essential steps for CAD. These tasks are challenging due to variations in cell shapes, touching cells, and cluttered background. In this paper, we present a cell detection and segmentation algorithm using the sparse reconstruction with trivial templates and a stacked denoising autoencoder (sDAE). The sparse reconstruction handles the shape variations by representing a testing patch as a linear combination of shapes in the learned dictionary. Trivial templates are used to model the touching parts. The sDAE, trained with the original data and their structured labels, is used for cell segmentation. To the best of our knowledge, this is the first study to apply sparse reconstruction and sDAE with structured labels for cell detection and segmentation. The proposed method is extensively tested on two data sets containing more than 3000 cells obtained from brain tumor and lung cancer images. Our algorithm achieves the best performance compared with other state of the arts.


computer vision and pattern recognition | 2017

MDNet: A Semantically and Visually Interpretable Medical Image Diagnosis Network

Zizhao Zhang; Yuanpu Xie; Fuyong Xing; Mason McGough; Lin Yang

The inability to interpret the model prediction in semantically and visually meaningful ways is a well-known shortcoming of most existing computer-aided diagnosis methods. In this paper, we propose MDNet to establish a direct multimodal mapping between medical images and diagnostic reports that can read images, generate diagnostic reports, retrieve images by symptom descriptions, and visualize attention, to provide justifications of the network diagnosis process. MDNet includes an image model and a language model. The image model is proposed to enhance multi-scale feature ensembles and utilization efficiency. The language model, integrated with our improved attention mechanism, aims to read and explore discriminative image feature descriptions from reports to learn a direct mapping from sentence words to image pixels. The overall network is trained end-to-end by using our developed optimization strategy. Based on a pathology bladder cancer images and its diagnostic reports (BCIDR) dataset, we conduct sufficient experiments to demonstrate that MDNet outperforms comparative baselines. The proposed image model obtains state-of-the-art performance on two CIFAR datasets as well.


medical image computing and computer assisted intervention | 2016

Pancreas Segmentation in MRI Using Graph-Based Decision Fusion on Convolutional Neural Networks

Jinzheng Cai; Le Lu; Zizhao Zhang; Fuyong Xing; Lin Yang; Qian Yin

Automated pancreas segmentation in medical images is a prerequisite for many clinical applications, such as diabetes inspection, pancreatic cancer diagnosis, and surgical planing. In this paper, we formulate pancreas segmentation in magnetic resonance imaging (MRI) scans as a graph based decision fusion process combined with deep convolutional neural networks (CNN). Our approach conducts pancreatic detection and boundary segmentation with two types of CNN models respectively: 1) the tissue detection step to differentiate pancreas and non-pancreas tissue with spatial intensity context; 2) the boundary detection step to allocate the semantic boundaries of pancreas. Both detection results of the two networks are fused together as the initialization of a conditional random field (CRF) framework to obtain the final segmentation output. Our approach achieves the mean dice similarity coefficient (DSC) 76.1% with the standard deviation of 8.7% in a dataset containing 78 abdominal MRI scans. The proposed algorithm achieves the best results compared with other state of the arts.


BMC Bioinformatics | 2014

Novel image markers for non-small cell lung cancer classification and survival prediction

Hongyuan Wang; Fuyong Xing; Hai Su; Arnold J. Stromberg; Lin Yang

BackgroundNon-small cell lung cancer (NSCLC), the most common type of lung cancer, is one of serious diseases causing death for both men and women. Computer-aided diagnosis and survival prediction of NSCLC, is of great importance in providing assistance to diagnosis and personalize therapy planning for lung cancer patients.ResultsIn this paper we have proposed an integrated framework for NSCLC computer-aided diagnosis and survival analysis using novel image markers. The entire biomedical imaging informatics framework consists of cell detection, segmentation, classification, discovery of image markers, and survival analysis. A robust seed detection-guided cell segmentation algorithm is proposed to accurately segment each individual cell in digital images. Based on cell segmentation results, a set of extensive cellular morphological features are extracted using efficient feature descriptors. Next, eight different classification techniques that can handle high-dimensional data have been evaluated and then compared for computer-aided diagnosis. The results show that the random forest and adaboost offer the best classification performance for NSCLC. Finally, a Cox proportional hazards model is fitted by component-wise likelihood based boosting. Significant image markers have been discovered using the bootstrap analysis and the survival prediction performance of the model is also evaluated.ConclusionsThe proposed model have been applied to a lung cancer dataset that contains 122 cases with complete clinical information. The classification performance exhibits high correlations between the discovered image markers and the subtypes of NSCLC. The survival analysis demonstrates strong prediction power of the statistical model built from the discovered image markers.


medical image computing and computer assisted intervention | 2013

Robust Selection-Based Sparse Shape Model for Lung Cancer Image Segmentation

Fuyong Xing; Lin Yang

Accurate cellular level segmentation of lung cancer is the prerequisite to extract objective morphological features in digitized pathology specimens. It is of great importance for image-guided diagnosis and prognosis. However, it is challenging to correctly and robustly segment cells in lung cancer images due to cell occlusion or touching, intracellular inhomogeneity, background clutter, etc. In this paper, we present a novel segmentation algorithm combining a robust selection-based sparse shape model (top-down) and an efficient local repulsive balloon snake deformable model (bottom-up) to tackle these challenges. The algorithm has been extensively tested on 62 cases with over 6000 tumor cells. We experimentally demonstrate that the proposed algorithm can produce better performance than other state-of-the-art methods.


european conference on computer vision | 2016

Kernel-Based Supervised Discrete Hashing for Image Retrieval

Xiaoshuang Shi; Fuyong Xing; Jinzheng Cai; Zizhao Zhang; Yuanpu Xie; Lin Yang

Recently hashing has become an important tool to tackle the problem of large-scale nearest neighbor searching in computer vision. However, learning discrete hashing codes is a very challenging task due to the NP hard optimization problem. In this paper, we propose a novel yet simple kernel-based supervised discrete hashing method via an asymmetric relaxation strategy. Specifically, we present an optimization model with preserving the hashing function and the relaxed linear function simultaneously to reduce the accumulated quantization error between hashing and linear functions. Furthermore, we improve the hashing model by relaxing the hashing function into a general binary code matrix and introducing an additional regularization term. Then we solve these two optimization models via an alternative strategy, which can effectively and stably preserve the similarity of neighbors in a low-dimensional Hamming space. The proposed hashing method can produce informative short binary codes that require less storage volume and lower optimization time cost. Extensive experiments on multiple benchmark databases demonstrate the effectiveness of the proposed hashing method with short binary codes and its superior performance over the state of the arts.

Collaboration


Dive into the Fuyong Xing's collaboration.

Top Co-Authors

Avatar

Lin Yang

University of Florida

View shared research outputs
Top Co-Authors

Avatar

Hai Su

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fujun Liu

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge