Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fuyuki Minagawa.
Journal of Clinical Medicine Research | 2012
Akira Kubota; Hajime Maeda; Akira Kanamori; Kiyokazu Matoba; Yasuyuki Jin; Fuyuki Minagawa; Mitsuo Obana; Koutarou Iemitsu; Shogo Ito; Hikaru Amemiya; Mizuki Kaneshiro; Masahiko Takai; Hideaki Kaneshige; Kazuhiko Hoshino; Masashi Ishikawa; Nobuaki Minami; Tetsuo Takuma; Nobuo Sasai; Sachio Aoyagi; Takehiro Kawata; Atsuko Mokubo; Hiroshi Takeda; Shin Honda; Hideo Machimura; Tetsuya Motomiya; Manabu Waseda; Yoshikazu Naka; Yasushi Tanaka; Yasuo Terauchi; Ikuro Matsuba
Background Sitagliptin is a DPP-4 inhibitor that became available for use in Japan three years ago. This study was conducted to identify the pleiotropic effects of sitagliptin other than blood glucose lowering in Japanese type 2 diabetes mellitus patients. Methods A retrospective, observational study of 940 type 2 diabetes mellitus patients was conducted. The primary outcome measures were HbA1c, blood pressure, and lipid profiles measured at 0, 4, and 12 weeks of sitagliptin therapy. Results After 12 weeks of sitagliptin treatment, compared with baseline, HbA1c decreased 0.64% ± 0.86%; systolic blood pressure (SBP) and diastolic blood pressure (DBP) decreased significantly; and serum creatinine (Cr) and uric acid (UA) levels were mildly but significantly elevated. A correlation analysis of the changes in systolic blood pressure, diastolic blood pressure, creatinine, and uric acid (ΔSBP, ΔDBP, ΔCr, ΔUA) from baseline to 12 weeks showed significant negative correlations between ΔSBP and ΔCr, ΔSBP and ΔUA, and ΔDBP and ΔCr. Total cholesterol and postprandial triglycerides were significantly decreased at both 4 and 12 weeks. Alkaline phosphatase (ALP) decreased significantly, and there was a significant positive correlation between changes in ALP and HbA1c. Conclusions Sitagliptin seems to be effective not only in lowering blood glucose but also in lowering blood pressure, lipid, and ALP levels. Sitagliptin appears to contribute to a Na-diuretic action due to GLP-1.
Journal of Diabetes Investigation | 2012
Akira Kubota; Hajime Maeda; Akira Kanamori; Kiyokazu Matoba; Yasuyuki Jin; Fuyuki Minagawa; Mitsuo Obana; Kotaro Iemitsu; Shogo Ito; Hikaru Amamiya; Mizuki Kaneshiro; Masahiko Takai; Hideaki Kaneshige; Kazuhiko Hoshino; Masashi Ishikawa; Nobuaki Minami; Tetsuro Takuma; Nobuo Sasai; Sachio Aoyagi; Takehiro Kawata; Atsuko Mokubo; Hiroshi Takeda; Shin Honda; Hideo Machimura; Tetsuya Motomiya; Manabu Waseda; Yoshikazu Naka; Yasushi Tanaka; Yasuo Terauchi; Ikuro Matsuba
(J Diabetes Invest, doi: 10.1111/j.2040‐1124.2012.00221.x, 2012)
Diabetes Research and Clinical Practice | 2014
Masahiko Takai; Masashi Ishikawa; Hajime Maeda; Akira Kanamori; Akira Kubota; Hikaru Amemiya; Takashi Iizuka; Kotaro Iemitsu; Tomoyuki Iwasaki; Goro Uehara; Shinichi Umezawa; Mitsuo Obana; Hideaki Kaneshige; Mizuki Kaneshiro; Takehiro Kawata; Nobuo Sasai; Tatsuya Saito; Tetsuo Takuma; Hiroshi Takeda; Keiji Tanaka; Nobuaki Tsurui; Shigeru Nakajima; Kazuhiko Hoshino; Shin Honda; Hideo Machimura; Kiyokazu Matoba; Fuyuki Minagawa; Nobuaki Minami; Yukiko Miyairi; Atsuko Mokubo
We retrospectively studied more than 1000 patients with type 2 diabetes attending 36 Japanese clinics to investigate the efficacy and safety of adding sitagliptin to various insulin regimens. We found that the treatment with add-on sitagliptin for 6-months was effective, irrespective of the type or dose of concomitant insulin.
Journal of Clinical Medicine Research | 2014
Takehiro Kawata; Akira Kanamori; Akira Kubota; Hajime Maeda; Hikaru Amamiya; Masahiko Takai; Hideaki Kaneshige; Fuyuki Minagawa; Kotaro Iemitsu; Mizuki Kaneshiro; Masashi Ishikawa; Hiroshi Takeda; Tetsurou Takuma; Atsuko Mokubo; Hideo Machimura; Mitsuo Obana; Masaaki Miyakawa; Yoshikazu Naka; Daisuke Suzuki; Yasuo Terauchi; Masao Toyoda; Yasushi Tanaka; Ikuro Matsuba
Background To evaluate the efficacy of switching from insulin to the GLP-1 receptor agonist liraglutide in type 2 diabetes mellitus patients. Methods The subjects were 231 outpatients with type 2 diabetes mellitus being treated with liraglutide for the first time. For 161 patients, liraglutide was continued for 24 weeks (continuation group), and for 70 patients, liraglutide was discontinued before 24 weeks (discontinuation group). Fasting and postprandial blood glucose levels, HbA1c, body weight, and insulin dose were evaluated before the switch to liraglutide (baseline) and at 12 and 24 weeks of administration. Trends in HbA1c and weight were compared at 12 and 24 weeks of administration. Multiple regression analyses were conducted to identify clinical factors predicting a successful switch to liraglutide. Results Multiple regression analysis with ΔHbA1c as the dependent variable in the continuation group indicated that HbA1c at 12 weeks of administration decreased with higher baseline HbA1c and increased with higher baseline daily insulin doses. Multiple regression analysis with Δweight as the dependent variable indicated that Δweight at 24 weeks of liraglutide administration was higher with higher baseline daily insulin doses and longer duration of diabetes. Based on the area under the receiver operating characteristic curve, cut-off values of 19 units for daily insulin dose and nine years for duration of diabetes were identified. Conclusions Switching from insulin to liraglutide therapy is possible for carefully selected patients. Daily insulin dosage and duration of insulin therapy appear to be clinically useful indicators for the efficacy of liraglutide therapy.
Journal of Clinical Medicine Research | 2015
Masashi Ishikawa; Masahiko Takai; Hajime Maeda; Akira Kanamori; Akira Kubota; Hikaru Amemiya; Takashi Iizuka; Kotaro Iemitsu; Tomoyuki Iwasaki; Goro Uehara; Shinichi Umezawa; Mitsuo Obana; Hideaki Kaneshige; Mizuki Kaneshiro; Takehiro Kawata; Nobuo Sasai; Tatsuya Saito; Tetsuo Takuma; Hiroshi Takeda; Keiji Tanaka; Nobuaki Tsurui; Shigeru Nakajima; Kazuhiko Hoshino; Shin Honda; Hideo Machimura; Kiyokazu Matoba; Fuyuki Minagawa; Nobuaki Minami; Yukiko Miyairi; Atsuko Mokubo
Background It is unclear whether dipeptidyl peptidase-4 inhibitors decrease hemoglobin A1c (HbA1c) in a glucose-dependent manner in patients on insulin therapy who have impaired insulin secretion. This study investigated factors influencing the efficacy of sitagliptin when used concomitantly with insulin to treat type 2 diabetes mellitus (T2DM) in the real-world setting. Methods A retrospective study was conducted of 1,004 T2DM patients at 36 Japanese clinics associated with the Diabetes Task Force of the Kanagawa Physicians Association. Eligible patients had been on insulin for at least 6 months, with a baseline HbA1c of 7.0% (53 mmol/mol) or higher. Baseline characteristics and laboratory data from 495 patients were subjected to multiple regression analysis to identify factors influencing the change of HbA1c. Results Most patients (n = 809) received sitagliptin at a dose of 50 mg. In the 1,004 patients, HbA1c decreased by 0.74% (6 mmol/mol) and body weight increased by 0.1 kg after 6 months of combination therapy. Multiple regression analysis showed that a higher baseline HbA1c, older age, and lower body mass index influenced the change of HbA1c after 6 months. Hypoglycemic symptoms occurred in 7.4%, but none were severe. Conclusions These results emphasize the importance of a higher HbA1c at the commencement of sitagliptin therapy in patients on insulin. Glucose-dependent suppression of glucagon secretion by sitagliptin may be useful in patients with impaired insulin secretion. Sitagliptin can be used concomitantly with insulin irrespective of the insulin regimen, duration of insulin treatment, and concomitant medications.
PLOS ONE | 2018
Rika Sakamoto; Tadashi Yamakawa; Kenichiro Takahashi; Jun Suzuki; Minori Shinoda; Kentaro Sakamaki; Hirosuke Danno; Hirohisa Tsuchiya; Manabu Waseda; Tatsuro Takano; Fuyuki Minagawa; Masahiko Takai; Tomohide Masutani; Jo Nagakura; Erina Shigematsu; Masashi Ishikawa; Shigeru Nakajima; Kazuaki Kadonosono; Yasuo Terauchi
Objectives Excessively short and long sleep durations are associated with type 2 diabetes, but there is limited information about the association between sleep quality and diabetes. Accordingly, the present study was performed to investigate this relationship. Materials and methods The subjects were 3249 patients with type 2 diabetes aged 20 years or older. Sleep quality was assessed by using the Pittsburgh Sleep Quality Index (PSQI). A higher global PSQI score indicates worse sleep quality, and a global PSQI score >5 differentiates poor sleepers from good sleepers. Results The mean global PSQI score was 5.94 ± 3.33, and 47.6% of the patients had a score of 6 or higher. Regarding the components of the PSQI, the score was highest for sleep duration, followed by subjective sleep quality and then sleep latency in decreasing order. When the patients were assigned to HbA1c quartiles (≤ 6.5%, 6.6–7.0%, 7.1–7.8%, and ≥ 7.9%), the top quartile had a significantly higher global PSQI score than the other quartiles. The top HbA1c quartile had a sleep duration of only 6.23 ± 1.42 hours, which was significantly shorter than in the other quartiles. Also, sleep latency was 25.3 ± 31.8 minutes in the top quartile, which was significantly longer (by approximately 20 minutes) than in the other quartiles. When analysis was performed with adjustment for age, gender, BMI, smoking, and other confounders, the global PSQI score was still significantly higher and sleep duration was shorter in the top HbA1c quartile (HbA1c ≥ 7.9%). Conclusions Japanese patients with type 2 diabetes were found to have poor subjective sleep quality independently of potential confounders, especially those with inadequate glycemic control. Impairment of sleep quality was associated with both increased sleep latency and a shorter duration of sleep.
BMC Endocrine Disorders | 2015
Shinichi Umezawa; Akira Kubota; Hajime Maeda; Akira Kanamori; Kiyokazu Matoba; Yasuyuki Jin; Fuyuki Minagawa; Mitsuo Obana; Kotaro Iemitsu; Shogo Ito; Hikaru Amamiya; Mizuki Kaneshiro; Masahiko Takai; Hideaki Kaneshige; Kazuhiko Hoshino; Masashi Ishikawa; Nobuaki Minami; Tetsuro Takuma; Nobuo Sasai; Sachio Aoyagi; Takehiro Kawata; Atsuko Mokubo; Yukiko Miyairi; Hiroshi Takeda; Shin Honda; Hideo Machimura; Tetsuya Motomiya; Manabu Waseda; Yoshikazu Naka; Yasushi Tanaka
Journal of Clinical Medicine Research | 2016
Takashi Iizuka; Kotaro Iemitsu; Masahiro Takihata; Masahiko Takai; Shigeru Nakajima; Nobuaki Minami; Shinichi Umezawa; Akira Kanamori; Hiroshi Takeda; Takehiro Kawata; Shogo Ito; Taisuke Kikuchi; Hikaru Amemiya; Mizuki Kaneshiro; Atsuko Mokubo; Tetsuo Takuma; Hideo Machimura; Keiji Tanaka; Taro Asakura; Akira Kubota; Sachio Aoyagi; Kazuhiko Hoshino; Masashi Ishikawa; Yoko Matsuzawa; Mitsuo Obana; Nobuo Sasai; Hideaki Kaneshige; Fuyuki Minagawa; Tatsuya Saito; Kazuaki Shinoda
Journal of Clinical Medicine Research | 2017
Takehiro Kawata; Takashi Iizuka; Kotaro Iemitsu; Masahiro Takihata; Masahiko Takai; Shigeru Nakajima; Nobuaki Minami; Shinichi Umezawa; Akira Kanamori; Hiroshi Takeda; Shogo Ito; Taisuke Kikuchi; Hikaru Amemiya; Mizuki Kaneshiro; Atsuko Mokubo; Tetsuo Takuma; Hideo Machimura; Keiji Tanaka; Taro Asakura; Akira Kubota; Sachio Aoyanagi; Kazuhiko Hoshino; Masashi Ishikawa; Yoko Matsuzawa; Mitsuo Obana; Nobuo Sasai; Hideaki Kaneshige; Fuyuki Minagawa; Tatsuya Saito; Kazuaki Shinoda
The Journal of Clinical Pharmacology | 2015
Kazunari Kamiko; Kazutaka Aoki; Hiroshi Kamiyama; Masataka Taguri; Eriko Shibata; Yumiko Ashiya; Fuyuki Minagawa; Kazuaki Shinoda; Shigeru Nakajima; Yasuo Terauchi