G.A. Afolaranmi
University of Strathclyde
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G.A. Afolaranmi.
Journal of Biomedical Materials Research Part A | 2012
G.A. Afolaranmi; Moeed Akbar; James M. Brewer; M.H. Grant
Metal-on-metal hip replacement implants generate wear debris and release ions both locally and systemically in patients. To investigate dissemination of metal, we determined blood and organ levels of cobalt (Co), chromium (Cr), and molybdenum (Mo) following the implantation of Co-Cr alloy wear debris in mice using skin pouches as a model system. We observed increased metal levels in blood for up to 72 h; the levels of Co were highest and remained elevated for 7 days. Co levels were elevated in all organs studied (liver, kidney, spleen, lung, heart, brain, and testes), with the peak at 48 h; highest levels were measured in liver and kidney (838.9 ± 223.7 ng/g in liver, and 938.8 ± 131.6 ng/g in kidney). Organ Cr levels were considerably lower than Co levels, for example, Cr in kidney was 117.2 ± 12.6 ng/g tissue at 48 h. Co is more mobile than Cr, reaching higher levels at earlier time points. This could be due to local tissue binding of Cr. Exposure to Co-Cr particles in vivo altered antioxidant enzyme expression and activities. We observed induction of catalase protein in the liver and glutathione reductase (GR) and peroxidase (GPx) proteins in the spleen. Activities of catalase and GPx in the liver were significantly increased while that of GR was decreased in the kidney. Organs of mice with Co-Cr particle implantation were exposed to increased metal levels capable of inducing reactive oxygen species scavenging enzymes, suggesting the tissue may be subjected to oxidative stress; however, the overall antioxidant defence system was not markedly disturbed.
Journal of Arthroplasty | 2010
G.A. Afolaranmi; J.N.A. Tettey; H.M. Murray; R. M. Dominic Meek; M. Helen Grant
Metal-on-metal resurfacing arthroplasty is associated with elevated circulating levels of cobalt and chromium ions. To establish the long-term safety of metal-on-metal resurfacing arthroplasty, it has been recommended that during clinical follow-up of these patients, the levels of these metal ions in blood be monitored. In this article, we provide information on the distribution of chromium VI ions (the predominant form of chromium released by cobalt-chrome alloys in vivo and in vitro) in blood fractions. Chromium VI is predominantly partitioned into red blood cells compared with plasma (analysis of variance, P < .05). The extent of accumulation in red blood cells is influenced by the anticoagulant used to collect the blood, with EDTA giving a lower partitioning into red cells compared with sodium citrate and sodium heparin.
Journal of Applied Toxicology | 2013
G.A. Afolaranmi; M. Helen Grant
Metal ions (Cr and Co) are released from metal orthopaedic implants in situ. We investigated tissue dissemination of Cr III, Cr VI and Co II ions in the body, and determined if administration of ascorbic acid (AA) affected their in vivo distribution using rats as a model system. Organs of rats treated with both Cr (VI) and Co (II) have higher metal ion levels when compared with control levels in the organs of rats without metal treatment. The reduced form of chromium, Cr III, is reported to be relatively impermeant to cell membranes in vitro, and in line with this, Cr III did not distribute into the organs of the rats after administration in vivo. Potent in vitro reduction of Cr (VI) to Cr III by AA was observed in this study. Prior intraperitoneal injection of AA lowered tissue uptake of both Cr VI and Co II, and increased faecal excretion, but not to a significant extent. AA may only be effective in increasing elimination of Cr VI at high concentrations when plasma reduction is saturated, and may be of limited therapeutic use in patients with orthopaedic implants. Copyright
Journal of Applied Toxicology | 2011
G.A. Afolaranmi; M.H. Grant
Metal ions (Cr and Co) are released from metal orthopaedic implants in situ. We investigated tissue dissemination of Cr III, Cr VI and Co II ions in the body, and determined if administration of ascorbic acid (AA) affected their in vivo distribution using rats as a model system. Organs of rats treated with both Cr (VI) and Co (II) have higher metal ion levels when compared with control levels in the organs of rats without metal treatment. The reduced form of chromium, Cr III, is reported to be relatively impermeant to cell membranes in vitro, and in line with this, Cr III did not distribute into the organs of the rats after administration in vivo. Potent in vitro reduction of Cr (VI) to Cr III by AA was observed in this study. Prior intraperitoneal injection of AA lowered tissue uptake of both Cr VI and Co II, and increased faecal excretion, but not to a significant extent. AA may only be effective in increasing elimination of Cr VI at high concentrations when plasma reduction is saturated, and may be of limited therapeutic use in patients with orthopaedic implants. Copyright
Toxicology in Vitro | 2011
G.A. Afolaranmi; Catherine Henderson; M. Helen Grant
Toxicology | 2011
G.A. Afolaranmi; Hassan Heshmat Al-Mufty; M.H. Grant
Toxicology | 2011
G.A. Afolaranmi; M.H. Grant
Toxicology | 2010
G.A. Afolaranmi; Catherine Henderson; M. Helen Grant
British Orthopaedic Research Society Annual Meeting | 2009
G.A. Afolaranmi; J.N.A. Tettey; H.M. Murray; R.M.D. Meek; J. Farmer; L.J. Eades; M.H. Grant
Toxicology | 2008
G.A. Afolaranmi; J.N.A. Tettey; J.D.S. Gaylor; H.M. Murray; R.M.D. Meek; M.H. Grant