Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. A. Baratta is active.

Publication


Featured researches published by G. A. Baratta.


Science | 2006

Organics captured from comet 81P/Wild 2 by the Stardust spacecraft

Scott A. Sandford; Jérôme Aléon; Conel M. Od. Alexander; Tohru Araki; Sas̆a Bajt; G. A. Baratta; Janet Borg; John P. Bradley; D. E. Brownlee; John Robert Brucato; Mark J. Burchell; Henner Busemann; Anna L. Butterworth; Simon J. Clemett; George D. Cody; L. Colangeli; George Cooper; Louis D'Hendecourt; Zahia Djouadi; Jason P. Dworkin; Gianluca Ferrini; Holger Fleckenstein; G. J. Flynn; Ian A. Franchi; Marc Douglas Fries; Mary K. Gilles; Daniel P. Glavin; Matthieu Gounelle; Faustine Grossemy; Chris Jacobsen

Organics found in comet 81P/Wild 2 samples show a heterogeneous and unequilibrated distribution in abundance and composition. Some organics are similar, but not identical, to those in interplanetary dust particles and carbonaceous meteorites. A class of aromatic-poor organic material is also present. The organics are rich in oxygen and nitrogen compared with meteoritic organics. Aromatic compounds are present, but the samples tend to be relatively poorer in aromatics than are meteorites and interplanetary dust particles. The presence of deuterium and nitrogen-15 excesses suggest that some organics have an interstellar/protostellar heritage. Although the variable extent of modification of these materials by impact capture is not yet fully constrained, a diverse suite of organic compounds is present and identifiable within the returned samples.


Science | 2006

Infrared Spectroscopy of Comet 81P/Wild 2 Samples Returned by Stardust

Lindsay P. Keller; Sasa Bajt; G. A. Baratta; Janet Borg; John P. Bradley; D. E. Brownlee; Henner Busemann; John Robert Brucato; Mark J. Burchell; L. Colangeli; Louis D'Hendecourt; Zahia Djouadi; Gianluca Ferrini; G. J. Flynn; Ian A. Franchi; Marc Douglas Fries; Monica M. Grady; Giles A. Graham; Faustine Grossemy; Anton T. Kearsley; Graciela Matrajt; Keiko Nakamura-Messenger; V. Mennella; Larry R. Nittler; M. E. Palumbo; Frank J. Stadermann; Peter Tsou; Alessandra Rotundi; Scott A. Sandford; Christopher J. Snead

Infrared spectra of material captured from comet 81P/Wild 2 by the Stardust spacecraft reveal indigenous aliphatic hydrocarbons similar to those in interplanetary dust particles thought to be derived from comets, but with longer chain lengths than those observed in the diffuse interstellar medium. Similarly, the Stardust samples contain abundant amorphous silicates in addition to crystalline silicates such as olivine and pyroxene. The presence of crystalline silicates in Wild 2 is consistent with mixing of solar system and interstellar matter. No hydrous silicates or carbonate minerals were detected, which suggests a lack of aqueous processing of Wild 2 dust.


The Astrophysical Journal | 2003

THE EFFECTS OF ION IRRADIATION ON THE EVOLUTION OF THE CARRIER OF THE 3.4 MICRON INTERSTELLAR ABSORPTION BAND

V. Mennella; G. A. Baratta; A. Esposito; G. Ferini; Yvonne J. Pendleton

Carbon grains in the interstellar medium evolve through exposure to UV photons, heat, gas, and cosmic rays. Understanding their formation, evolution, and destruction is an essential component of evaluating the composition of the dust available for newly forming planetary systems. The 3.4 lm absorption band, attributed to the aliphatic C”H stretch vibration, is a useful probe of the degree to which energetic processing affects hydrogenated carbon grains. Here we report on the effects of ion bombardment of two different kinds of nano-size hydrogenated carbon grains with different hydrogen content. Grain samples, both with and without a mantle of H2O ice, were irradiated with 30 keV He + to simulate cosmic-ray processing in both diffuse and dense interstellar medium conditions. The ion fluences ranged between 1:5 � 10 13 and 7:9 � 10 15 ions cm � 2 . Infrared and Raman spectroscopy were used to study the effects of ion irradiation on grains. In both the dense and diffuse interstellar medium simulations, ion bombardment led to a reduction of the 3.4 lm band intensity. To discuss the effects of cosmic-ray irradiation of interstellar hydrogenated carbon materials we adopt the approximation of 1 MeV monoenergetic protons. An estimate of the C”H bond destruction cross section by 1 MeV protons was made based on experiments using 30 keV He + ions and model calculations. In combination with results from our previous studies, which focused on UV irradiation and thermal H atom bombardment, the present results indicate that the C”H bond destruction by fastcolliding charged particles is negligible with respect to that of UV photons in the diffuse ISM. However, in dense cloud regions, cosmic-ray bombardment is the most significant C”H bond destruction mechanism when the optical depth corresponds to values of the visual extinction larger than � 5 mag. The results presented here strengthen the new interpretation of the evolution of the interstellar aliphatic component (i.e., the C”H bonds in the CH2 and CH3 groups) as evidenced by the presence of the 3.4 lm absorption band in the diffuse medium and the absence of such a signature in the dense cloud environment. The evolutionary transformation of carbon grains, induced by H atoms, UV photons, and cosmic rays, indicates that C”H bonds are readily formed, in situ, in the diffuse interstellar medium and are destroyed in the dense cloud environment.


Astronomy and Astrophysics | 2005

CO2 synthesis in solid CO by Lyman-α photons and 200 keV protons

M. J. Loeffler; G. A. Baratta; M. E. Palumbo; G. Strazzulla; Raul A. Baragiola

We have studied the synthesis of carbon dioxide from solid carbon monoxide at 16 K induced by photolysis with Lyman-α photons and by irradiation with 200 keV protons to quantitatively compare the effects of photolysis and ion irradiation on CO ice and to determine the importance of these processes in interstellar ice grains. The CO and CO2 concentrations during irradiation of an initially pure CO film evolve with fluence to a saturation value, a behaviour that is explained by a two-state model. Our results indicate that the initial CO2 production rates for both radiation processes are similar when normalized to the absorbed energy and that the solid CO2 abundance observed in the interstellar ices cannot be explained only by radiolysis and photolysis of pure solid CO.


Astronomy and Astrophysics | 2002

A comparison of ion irradiation and UV photolysis of CH4 and CH3OH

G. A. Baratta; G. Leto; M. E. Palumbo

We have studied by infrared absorption spectroscopy the effects induced by fast ions (30 keV) and Lyman-α photons (10.2 eV) on some molecular ices at low temperature (10-20 K). It is well known that in both cases the physical and chemical properties of the ices are modified. However while the energy released by ions depends mainly on their energy and on the target species, the effects induced by photons also depend on the optical properties of the sample. Here we show that the effects of ion irradiation and UV photolysis are comparable on fresh ices (i.e. at low doses) but are increasingly different as processing is continued (i.e. at high doses).


The Astrophysical Journal | 2004

Formation of CO and CO2 Molecules by Ion Irradiation of Water Ice-covered Hydrogenated Carbon Grains

V. Mennella; M. E. Palumbo; G. A. Baratta

We present the results of experiments aimed at studying the influence of the type of grain on the chemical composition of the ice mantles during energetic processing under simulated dense medium conditions. Formation of CO and CO2 molecules occurs when hydrogenated carbon grains with a water ice cap are irradiated with 30 keV He+ ions at low temperature. The fraction of carbon in the grains converted to CO and CO2 by ions is at least 0.03 and 0.02, respectively. An estimation of the formation cross section of these molecules by 30 keV He+ ions has been derived from the intensity increase of their infrared stretching bands as a function of the ion fluence. On the basis of the laboratory results, it has been possible to evaluate the contribution of CO and CO2 produced on carbon grain by cosmic rays to the observed column densities of these molecules for dense clouds whose visual extinction is known. The mechanism we have studied does not dominate other CO2 formation processes; however, its contribution is in addition to other processes occurring on ice mantles. The spectral profile and the contribution to the observed column densities make solid CO formed by cosmic-ray irradiation of ice-layered carbon grains a good candidate for the red component of the interstellar CO stretching feature, which is generally attributed to CO mixed in with water ice. As a consequence of the formation of CO and CO2 molecules on carbon grains, a slow chemical erosion of the particles takes place.


The Astrophysical Journal | 1992

Raman and infrared spectra of polycyclic aromatic hydrocarbon molecules of possible astrophysical interest

L. Colangeli; V. Mennella; G. A. Baratta; E. Bussoletti; G. Strazzulla

We present the results of a laboratory analysis performed by means of Raman and infrared spectroscopy on six polycyclic aromatic hydrocarbons (PAHs): chrysene, triphenylene, perylen, benzo[α]pyrene, pentacene, and coronene. These are among the most stable and the most abundant PAHs suggested as an important constituent of interstellar matter. The Raman spectrum of PAHs exhibits intense peaks around 1350 and 1600 cm −1 , falling close to the two broad bands observed from interplanetary dust particles (IDPs)


Astronomy and Astrophysics | 2004

Forsterite amorphisation by ion irradiation: Monitoring by infrared spectroscopy

John Robert Brucato; G. Strazzulla; G. A. Baratta; L. Colangeli

We present experimental results on the crystal-amorphous transition of forsterite (Mg2SiO4) silicate under ion ir- radiation. The aim of this work is to study the structural evolution of one of the most abundant crystalline silicates observed in space driven by ion irradiation. To this aim, forsterite films have been synthesised in the laboratory and irradiated with low energy (30-60 keV) ion beams. Structural changes during irradiation with H + ,H e + ,C + ,a nd Ar ++ have been observed and monitored by infrared spectroscopy. The fraction of crystalline forsterite converted into the amorphous form is a function of the energy deposited by nuclear collision by ions in the target. Laboratory results indicate that ion irradiation is a mechanism potentially active in space for the amorphisation of silicates. Physical properties obtained in this work can be used to model the evolution of silicate grains during their life cycle from evolved stars, through different interstellar environments and up to being incorporated in Solar System objects.


Astronomy and Astrophysics | 2004

A Raman study of ion irradiated icy mixtures

Graziella Ferini; G. A. Baratta; M. E. Palumbo

In this paper we present a Raman study of pure CH4 ,H 2O:CH4:N2 and CH3OH:N2 frozen films before and after ion irradiation at 12 K, 100 K and 300 K. By means of Raman spectroscopy, we monitor the structural evolution of each film, whose chemical and physical properties are deeply modified by the interaction with the ion beam. For the two methane containing samples, Raman spectra show that the initial ice is partially converted into a refractory residue, which under further irradiation evolves towards an amorphous carbon (AC) with a band near 1560 cm 1 (G line) and a shoulder at about 1360 cm 1 (D line). No evidence of the AC Raman band is seen in the spectra of the methanol-containing mixture. By means of Lorentzian fits, we have determined the specific parameters of the AC band (G and D line peak positions, widths and relative intensities) in our spectra after ion irradiation and we have compared them with the corresponding parameters of the band as observed in the spectra of 11 IDPs (Interplanetary Dust Particles). Here we present the experimental results and discuss their contribution to our knowledge of the origin and evolution of IDPs.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2009

Novel measurements of refractive index, density and mid-infrared integrated band strengths for solid O2, N2O and NO2: N2O4 mixtures

D. Fulvio; Bhala Sivaraman; G. A. Baratta; M. E. Palumbo; Nigel J. Mason

We present novel measurements of the refractive index, density and integrated band strengths of mid-infrared features of solid N(2)O at 16K and of NO(2) and N(2)O(4) in two frozen NO(2):N(2)O(4) mixtures deposited at 16 and 60K. The refractive index and density measurements were performed also for frozen O(2) deposited at 16K. In this case, the integrated band strength values could not be determined since O(2) is a homonuclear molecule and therefore its fundamental mode is not infrared active. The solid samples were analysed by infrared spectroscopy in the 8000/800cm(-1) range. The sample thickness was measured by the interference curve obtained using a He-Ne laser operating at 543nm. The refractive index at this laser wavelength was obtained, by numerical methods, from the measured amplitude of the interference curve. The density values were obtained using the Lorentz-Lorenz relation. Integrated band strength values were then obtained by a linear fit of the integrated band intensities plotted versus column density values. The astrophysical relevance of these novel measurements is briefly discussed.

Collaboration


Dive into the G. A. Baratta's collaboration.

Top Co-Authors

Avatar

L. Colangeli

European Space Research and Technology Centre

View shared research outputs
Top Co-Authors

Avatar

V. Mennella

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

R. Brunetto

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge