Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G.A. Navratil is active.

Publication


Featured researches published by G.A. Navratil.


Nuclear Fusion | 2007

Chapter 3: MHD stability, operational limits and disruptions

T. C. Hender; J. Wesley; J. Bialek; Anders Bondeson; Allen H. Boozer; R.J. Buttery; A. M. Garofalo; T. P. Goodman; R. Granetz; Yuri Gribov; O. Gruber; M. Gryaznevich; G. Giruzzi; S. Günter; N. Hayashi; P. Helander; C. C. Hegna; D. Howell; D.A. Humphreys; G. Huysmans; A.W. Hyatt; A. Isayama; Stephen C. Jardin; Y. Kawano; A. G. Kellman; C. Kessel; H. R. Koslowski; R.J. La Haye; Enzo Lazzaro; Yueqiang Liu

Progress in the area of MHD stability and disruptions, since the publication of the 1999 ITER Physics Basis document (1999 Nucl. Fusion 39 2137-2664), is reviewed. Recent theoretical and experimental research has made important advances in both understanding and control of MHD stability in tokamak plasmas. Sawteeth are anticipated in the ITER baseline ELMy H-mode scenario, but the tools exist to avoid or control them through localized current drive or fast ion generation. Active control of other MHD instabilities will most likely be also required in ITER. Extrapolation from existing experiments indicates that stabilization of neoclassical tearing modes by highly localized feedback-controlled current drive should be possible in ITER. Resistive wall modes are a key issue for advanced scenarios, but again, existing experiments indicate that these modes can be stabilized by a combination of plasma rotation and direct feedback control with non-axisymmetric coils. Reduction of error fields is a requirement for avoiding non-rotating magnetic island formation and for maintaining plasma rotation to help stabilize resistive wall modes. Recent experiments have shown the feasibility of reducing error fields to an acceptable level by means of non-axisymmetric coils, possibly controlled by feedback. The MHD stability limits associated with advanced scenarios are becoming well understood theoretically, and can be extended by tailoring of the pressure and current density profiles as well as by other techniques mentioned here. There have been significant advances also in the control of disruptions, most notably by injection of massive quantities of gas, leading to reduced halo current fractions and a larger fraction of the total thermal and magnetic energy dissipated by radiation. These advances in disruption control are supported by the development of means to predict impending disruption, most notably using neural networks. In addition to these advances in means to control or ameliorate the consequences of MHD instabilities, there has been significant progress in improving physics understanding and modelling. This progress has been in areas including the mechanisms governing NTM growth and seeding, in understanding the damping controlling RWM stability and in modelling RWM feedback schemes. For disruptions there has been continued progress on the instability mechanisms that underlie various classes of disruption, on the detailed modelling of halo currents and forces and in refining predictions of quench rates and disruption power loads. Overall the studies reviewed in this chapter demonstrate that MHD instabilities can be controlled, avoided or ameliorated to the extent that they should not compromise ITER operation, though they will necessarily impose a range of constraints.


Physics of Plasmas | 2001

Active feedback stabilization of the resistive wall mode on the DIII-D device

M. Okabayashi; J. Bialek; M.S. Chance; M. S. Chu; E. D. Fredrickson; A. M. Garofalo; M. Gryaznevich; Ron Hatcher; T. H. Jensen; L. C. Johnson; R.J. La Haye; E. A. Lazarus; M. A. Makowski; J. Manickam; G.A. Navratil; J. T. Scoville; E. J. Strait; A.D. Turnbull; M.L. Walker; Diii-D Team

A proof of principle magnetic feedback stabilization experiment has been carried out to suppress the resistive wall mode (RWM), a branch of the ideal magnetohydrodynamic (MHD) kink mode under the influence of a stabilizing resistive wall, on the DIII-D tokamak device [Plasma Phys. and Contr. Fusion Research (International Atomic Energy Agency, Vienna, 1986), p. 159]. The RWM was successfully suppressed and the high beta duration above the no wall limit was extended to more than 50 times the resistive wall flux diffusion time. It was observed that the mode structure was well preserved during the time of the feedback application. Several lumped parameter formulations were used to study the feedback process. The observed feedback characteristics are in good qualitative agreement with the analysis. These results provide encouragement to future efforts towards optimizing the RWM feedback methodology in parallel to what has been successfully developed for the n = 0 vertical positional control. Newly developed MHD codes have been extremely useful in guiding the experiments and in providing possible paths for the next step.


Physics of Plasmas | 2004

Resistive wall mode stabilization with internal feedback coils in DIII-D

E. J. Strait; J. Bialek; I.N. Bogatu; M.S. Chance; M. S. Chu; Dana Harold Edgell; A. M. Garofalo; G.L. Jackson; R. J. Jayakumar; T. H. Jensen; O. Katsuro-Hopkins; J.S. Kim; R.J. La Haye; L. L. Lao; M. A. Makowski; G.A. Navratil; M. Okabayashi; H. Reimerdes; J. T. Scoville; Alan D. Turnbull; Diii-D Team

A set of twelve coils for stability control has recently been installed inside the DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] vacuum vessel, offering faster time response and a wider range of applied mode spectra than the previous external coils. Stabilization of the n=1 ideal kink mode is crucial to many high beta, steady-state tokamak scenarios. A resistive wall converts the kink to a slowly growing resistive wall mode (RWM). With feedback-controlled error field correction, rotational stabilization of the RWM has been sustained for more than 2.5 s. Using the internal coils, the required correction field is smaller than with the external coils, consistent with a better match to the mode spectrum of the error field. Initial experiments in direct feedback control have stabilized the RWMs at higher beta and lower rotation than could be achieved by the external coils in similar plasmas, in qualitative agreement with numerical modeling. The new coils have also allowed wall stabilization in plasmas with...


Physics of Plasmas | 1999

Stabilization of the external kink and control of the resistive wall mode in tokamaks

A. M. Garofalo; Alan D. Turnbull; E. J. Strait; M. E. Austin; J. Bialek; M. S. Chu; E. D. Fredrickson; R.J. La Haye; G.A. Navratil; L. L. Lao; E. A. Lazarus; M. Okabayashi; Brian W. Rice; S.A. Sabbagh; J. T. Scoville; T. S. Taylor; M.L. Walker

One promising approach to maintaining stability of high beta tokamak plasmas is the use of a conducting wall near the plasma to stabilize low-n ideal magnetohydrodynamic instabilities. However, with a resistive wall, either plasma rotation or active feedback control is required to stabilize the more slowly growing resistive wall modes (RWMs). Previous experiments have demonstrated that plasmas with a nearby conducting wall can remain stable to the n=1 ideal external kink above the beta limit predicted with the wall at infinity. Recently, extension of the wall stabilized lifetime τL to more than 30 times the resistive wall time constant τw and detailed, reproducible observation of the n=1 RWM have been possible in DIII-D [Plasma Physics and Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1986), p. 159] plasmas above the no-wall beta limit. The DIII-D measurements confirm characteristics common to several RWM theories. The mode is destabilized as the plasma rotation at the q=3 surfac...


Nuclear Fusion | 2003

Resistive wall stabilization of high-beta plasmas in DIII?D

E. J. Strait; J. Bialek; N. Bogatu; M.S. Chance; M. S. Chu; Dana Harold Edgell; A. M. Garofalo; G.L. Jackson; T. H. Jensen; L. C. Johnson; J.S. Kim; R.J. La Haye; G.A. Navratil; M. Okabayashi; H. Reimerdes; J. T. Scoville; Alan D. Turnbull; M.L. Walker

Recent DIII?D experiments show that ideal kink-modes can be stabilized at high beta by a resistive wall, with sufficient plasma rotation. However, the resonant response to static magnetic field asymmetries by a marginally stable resistive wall mode can lead to strong damping of the rotation. Careful reduction of such asymmetries has allowed plasmas with beta well above the ideal MHD no-wall limit, and approaching the ideal-wall limit, to be sustained for durations exceeding 1?s. Feedback control can improve plasma stability by direct stabilization of the resistive wall mode or by reducing magnetic field asymmetry. Assisted by plasma rotation, direct feedback control of resistive wall modes with growth rates more than five times faster than the characteristic wall time has been observed. These results open a new regime of tokamak operation above the free-boundary stability limit, accessible by a combination of plasma rotation and feedback control.


Nuclear Fusion | 2007

Stability and control of resistive wall modes in high beta, low rotation DIII-D plasmas

A. M. Garofalo; G.L. Jackson; R.J. La Haye; M. Okabayashi; H. Reimerdes; E. J. Strait; J.R. Ferron; R. J. Groebner; Y. In; M. J. Lanctot; Go Matsunaga; G.A. Navratil; W.M. Solomon; H. Takahashi; M. Takechi; Alan D. Turnbull

Recent high-β DIII-D (Luxon J.L. 2002 Nucl. Fusion 42 64) experiments with the new capability of balanced neutral beam injection show that the resistive wall mode (RWM) remains stable when the plasma rotation is lowered to a fraction of a per cent of the Alfven frequency by reducing the injection of angular momentum in discharges with minimized magnetic field errors. Previous DIII-D experiments yielded a high plasma rotation threshold (of order a few per cent of the Alfven frequency) for RWM stabilization when resonant magnetic braking was applied to lower the plasma rotation. We propose that the previously observed rotation threshold can be explained as the entrance into a forbidden band of rotation that results from torque balance including the resonant field amplification by the stable RWM. Resonant braking can also occur naturally in a plasma subject to magnetic instabilities with a zero frequency component, such as edge localized modes. In DIII-D, robust RWM stabilization can be achieved using simultaneous feedback control of the two sets of non-axisymmetric coils. Slow feedback control of the external coils is used for dynamic error field correction; fast feedback control of the internal non-axisymmetric coils provides RWM stabilization during transient periods of low rotation. This method of active control of the n = 1 RWM has opened access to new regimes of high performance in DIII-D. Very high plasma pressure combined with elevated qmin for high bootstrap current fraction, and internal transport barriers for high energy confinement, are sustained for almost 2 s, or 10 energy confinement times, suggesting a possible path to high fusion performance, steady-state tokamak scenarios.


Physics of fluids. B, Plasma physics | 1991

High poloidal beta equilibria in the Tokamak Fusion Test Reactor limited by a natural inboard poloidal field null

Steven Anthony Sabbagh; R. A. Gross; M.E. Mauel; G.A. Navratil; M.G. Bell; R. E. Bell; M. Bitter; N. Bretz; R.V. Budny; C.E. Bush; M. S. Chance; P.C. Efthimion; E. D. Fredrickson; R. Hatcher; R.J. Hawryluk; S. P. Hirshman; A. Janos; Stephen C. Jardin; D.L. Jassby; J. Manickam; D. McCune; K. McGuire; S.S. Medley; D. Mueller; Y. Nagayama; D.K. Owens; M. Okabayashi; H. Park; A. T. Ramsey; B. C. Stratton

Recent operation of the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Nucl. Fusion Research 1, 51 (1986)] has produced plasma equilibria with values of Λ≡βp eq+li/2 as large as 7, eβp dia≡2μ0e〈p⊥〉/〈〈Bp〉〉2 as large as 1.6, and Troyon normalized diamagnetic beta [Plasma Phys. Controlled Fusion 26, 209 (1984); Phys. Lett. 110A, 29 (1985)], βNdia≡108〈βt⊥〉aB0/Ip as large as 4.7. When eβp dia≳1.25, a separatrix entered the vacuum chamber, producing a naturally diverted discharge that was sustained for many energy confinement times, τE. The largest values of eβp and plasma stored energy were obtained when the plasma current was ramped down prior to neutral beam injection. The measured peak ion and electron temperatures were as large as 24 and 8.5 keV, respectively. Plasma stored energy in excess of 2.5 MJ and τE greater than 130 msec were obtained. Confinement times of greater than 3 times that expected from L‐mode predictions have been achieved. The fusion power gain QDD reached a value of 1.3×10−...


Plasma Physics and Controlled Fusion | 2002

Stabilization of the resistive wall mode in DIII–D by plasma rotation and magnetic feedback

M. Okabayashi; J. Bialek; M.S. Chance; M. S. Chu; E.D. Fredrickson; A. M. Garofalo; Ron Hatcher; T. H. Jensen; L C Johnson; R.J. La Haye; G.A. Navratil; H. Reimerdes; J. T. Scoville; E. J. Strait; Alan D. Turnbull; M.L. Walker

Suppression of the resistive wall mode (RWM) has been successfully demonstrated in the DIII–D tokamak by using rotational stabilization in conjunction with a close-fitting vacuum vessel wall. The duration of the high-pressure discharge was extended to hundreds of times the wall skin time. Frequently, the plasma pressure reached the ideal-wall magnetohydrodynamic (MHD) kink limit. The confined pressure is up to twice as high as the no-wall ideal MHD kink limit. Near its marginal stability point, the RWM is found to resonate with residual non-axisymmetric fields (e.g. components of the error field). A magnetic feedback system has been used to identify and compensate for the residual non-axisymmetric fields. This is to the best of our knowledge, the first demonstration of the sustainment of a stable plasma with pressure at levels well above the no-wall pressure limit. This technique is expected to be applicable to other toroidal devices.


Physics of Plasmas | 2002

Beta-limiting instabilities and global mode stabilization in the National Spherical Torus Experiment

S.A. Sabbagh; R.E. Bell; M.G. Bell; J. Bialek; A.H. Glasser; Benoit P. Leblanc; J. Menard; F. Paoletti; D. Stutman; E.D. Fredrickson; A. M. Garofalo; D.A. Gates; S.M. Kaye; L. L. Lao; R. Maingi; D. Mueller; G.A. Navratil; M. Ono; M. J. Peng; E. J. Synakowski; W. Zhu

Research on the stability of spherical torus plasmas at and above the no-wall beta limit is being addressed on the National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 40, 557 (2000)], that has produced low aspect ratio plasmas, R/a∼1.27 at plasma current exceeding 1.4 MA with high energy confinement (TauE/TauE_ITER89P>2). Toroidal and normalized beta have exceeded 25% and 4.3, respectively, in q∼7 plasmas. The beta limit is observed to increase and then saturate with increasing li. The stability factor βN/li has reached 6, limited by sudden beta collapses. Increased pressure peaking leads to a decrease in βN. Ideal stability analysis of equilibria reconstructed with EFIT [L. L. Lao et al., Nucl. Fusion 25, 1611 (1985)] shows that the plasmas are at the no-wall beta limit for the n=1 kink/ballooning mode. Low aspect ratio and high edge q theoretically alter the plasma stability and mode structure compared to standard tokamak configurations. Below the no-wall limit, stability calculations show ...


Physics of Plasmas | 2004

Modeling of feedback and rotation stabilization of the resistive wall mode in tokamaks

M. S. Chu; Anders Bondeson; M.S. Chance; Yueqiang Liu; A. M. Garofalo; A. H. Glasser; G.L. Jackson; R.J. La Haye; L. L. Lao; G.A. Navratil; M. Okabayashi; H. Remierdes; J. T. Scoville; E. J. Strait

Steady-state operation of the advanced tokamak reactor relies on maintaining plasma stability with respect to the resistive wall mode ~RWM!. Active magnetic feedback and plasma rotation are the two methods proposed and demonstrated for this purpose. A comprehensive modeling effort including both magnetic feedback and plasma rotation is needed for understanding the physical mechanisms of the stabilization and to project to future devices. For plasma with low rotation, a complete solution for the feedback issue is obtained by assuming the plasma obeys ideal magnetohydrodynamics ~MHDs! and utilizing a normal mode approach ~NMA! @M. S. Chu et al., Nucl. Fusion 43, 441 ~2003!#. It is found that poloidal sensors are more effective than radial sensors and coils inside of the vacuum vessel more effective than outside. For plasmas with non-negligible rotation, a comprehensive linear nonideal MHD code, the MARS-F has been found to be suitable. MARS-F @Y. Q. Liu et al., Phys. Plasmas 7, 3681 ~2000!# has been benchmarked in the ideal MHD limit against the NMA. The effect of rotation stabilization of the plasma depends on the plasma dissipation model. Broad qualitative features of the experiment are reproduced. Rotation reduces the feedback gain required for RWM stabilization. Reduction is significant when rotation is near the critical rotation speed needed for stabilization. The International Thermonuclear Experimental Reactor ~ITER! @R. Aymar et al., Plasma Phys. Controlled Fusion 44, 519 ~2002!# ~scenario IV for advanced tokamak operation! may be feedback stabilized with babove the no wall limit and up to an increment of ;50% towards the ideal limit. Rotation further improves the stability.

Collaboration


Dive into the G.A. Navratil's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Okabayashi

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge