G. A. Rochau
Sandia National Laboratories
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. A. Rochau.
Physics of Plasmas | 2005
M. Keith Matzen; M. A. Sweeney; R. G. Adams; J. R. Asay; J. E. Bailey; Guy R. Bennett; D.E. Bliss; Douglas D. Bloomquist; T. A. Brunner; Robert B. Campbell; Gordon Andrew Chandler; C.A. Coverdale; M. E. Cuneo; Jean-Paul Davis; C. Deeney; Michael P. Desjarlais; G. L. Donovan; Christopher Joseph Garasi; Thomas A. Haill; C. A. Hall; D.L. Hanson; M. J. Hurst; B. Jones; M. D. Knudson; R. J. Leeper; R.W. Lemke; M.G. Mazarakis; D. H. McDaniel; T.A. Mehlhorn; T. J. Nash
The Z accelerator [R. B. Spielman, W. A. Stygar, J. F. Seamen et al., Proceedings of the 11th International Pulsed Power Conference, Baltimore, MD, 1997, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), Vol. 1, p. 709] at Sandia National Laboratories delivers ∼20MA load currents to create high magnetic fields (>1000T) and high pressures (megabar to gigabar). In a z-pinch configuration, the magnetic pressure (the Lorentz force) supersonically implodes a plasma created from a cylindrical wire array, which at stagnation typically generates a plasma with energy densities of about 10MJ∕cm3 and temperatures >1keV at 0.1% of solid density. These plasmas produce x-ray energies approaching 2MJ at powers >200TW for inertial confinement fusion (ICF) and high energy density physics (HEDP) experiments. In an alternative configuration, the large magnetic pressure directly drives isentropic compression experiments to pressures >3Mbar and accelerates flyer plates to >30km∕s for equation of state ...
Physics of Plasmas | 2009
J. E. Bailey; G. A. Rochau; R. C. Mancini; C. A. Iglesias; J. J. MacFarlane; Igor E. Golovkin; C. Blancard; Ph. Cosse; G. Faussurier
Theoretical opacities are required for calculating energy transport in plasmas. In particular, understanding stellar interiors, inertial fusion, and Z pinches depends on the opacities of mid-atomic-number elements over a wide range of temperatures. The 150–300 eV temperature range is particularly interesting. The opacity models are complex and experimental validation is crucial. For example, solar models presently disagree with helioseismology and one possible explanation is inadequate theoretical opacities. Testing these opacities requires well-characterized plasmas at temperatures high enough to produce the ion charge states that exist in the sun. Typical opacity experiments heat a sample using x rays and measure the spectrally resolved transmission with a backlight. The difficulty grows as the temperature increases because the heating x-ray source must supply more energy and the backlight must be bright enough to overwhelm the plasma self-emission. These problems can be overcome with the new generation...
Physics of Plasmas | 2013
Ryan D McBride; M. R. Martin; R.W. Lemke; J. B. Greenly; Christopher A. Jennings; Dean C. Rovang; Daniel Brian Sinars; M. E. Cuneo; Mark Herrmann; Stephen A. Slutz; C. Nakhleh; D. D. Ryutov; Jean-Paul Davis; Dawn G. Flicker; B.E. Blue; Kurt Tomlinson; D. G. Schroen; R. M. Stamm; G. E. Smith; J. K. Moore; T. J. Rogers; G. K. Robertson; R. J. Kamm; I. C. Smith; M. E. Savage; W. A. Stygar; G. A. Rochau; M. Jones; M. R. Lopez; John L. Porter
Multiple experimental campaigns have been executed to study the implosions of initially solid beryllium (Be) liners (tubes) on the Z pulsed-power accelerator. The implosions were driven by current pulses that rose from 0 to 20 MA in either 100 or 200 ns (200 ns for pulse shaping experiments). These studies were conducted in support of the recently proposed Magnetized Liner Inertial Fusion concept [Slutz et al., Phys. Plasmas 17, 056303 (2010)], as well as for exploring novel equation-of-state measurement techniques. The experiments used thick-walled liners that had an aspect ratio (initial outer radius divided by initial wall thickness) of either 3.2, 4, or 6. From these studies, we present three new primary results. First, we present radiographic images of imploding Be liners, where each liner contained a thin aluminum sleeve for enhancing the contrast and visibility of the liners inner surface in the images. These images allow us to assess the stability of the liners inner surface more accurately and more directly than was previously possible. Second, we present radiographic images taken early in the implosion (prior to any motion of the liners inner surface) of a shockwave propagating radially inward through the liner wall. Radial mass density profiles from these shock compression experiments are contrasted with profiles from experiments where the Z accelerators pulse shaping capabilities were used to achieve shockless (“quasi-isentropic”) liner compression. Third, we present “micro-B” measurements of azimuthal magnetic field penetration into the initially vacuum-filled interior of a shocked liner. Our measurements and simulations reveal that the penetration commences shortly after the shockwave breaks out from the liners inner surface. The field then accelerates this low-density “precursor” plasma to the axis of symmetry.
Physics of Plasmas | 2014
Thomas James Awe; Christopher A. Jennings; R. D. McBride; M. E. Cuneo; Derek C. Lamppa; M. R. Martin; Dean C. Rovang; Daniel Brian Sinars; Stephen A. Slutz; A. C. Owen; Kurt Tomlinson; M. R. Gomez; Stephanie B. Hansen; Mark Herrmann; M. Jones; J. L. McKenney; G. K. Robertson; G. A. Rochau; M. E. Savage; D. G. Schroen; W. A. Stygar
Recent experiments at the Sandia National Laboratories Z Facility have, for the first time, studied the implosion dynamics of magnetized liner inertial fusion (MagLIF) style liners that were pre-imposed with a uniform axial magnetic field. As reported [T. J. Awe et al., Phys. Rev. Lett. 111, 235005 (2013)] when premagnetized with a 7 or 10 T axial field, these liners developed 3D-helix-like hydrodynamic instabilities; such instabilities starkly contrast with the azimuthally correlated magneto-Rayleigh-Taylor (MRT) instabilities that have been consistently observed in many earlier non-premagnetized experiments. The helical structure persisted throughout the implosion, even though the azimuthal drive field greatly exceeded the expected axial field at the liners outer wall for all but the earliest stages of the experiment. Whether this modified instability structure has practical importance for magneto-inertial fusion concepts depends primarily on whether the modified instability structure is more stable th...
Physics of Plasmas | 2007
O. S. Jones; Jochen Schein; Mordecai D. Rosen; L. J. Suter; R. J. Wallace; E. L. Dewald; S. H. Glenzer; K. M. Campbell; Janelle Gunther; B. A. Hammel; O. L. Landen; C. Sorce; R. E. Olson; G. A. Rochau; H. Wilkens; J. L. Kaae; J. D. Kilkenny; A. Nikroo; S. P. Regan
This work is a summary of experiments, numerical simulations, and analytic modeling that demonstrate improved radiation confinement when changing from a hohlraum made from gold to one made from a mixture of high Z materials (“cocktail”). First, the results from several previous planar sample experiments are described that demonstrated the potential of cocktail wall materials. Then a series of more recent experiments are described in which the radiation temperatures of hohlraums made from uranium-based cocktails were directly measured and compared with a gold reference hohlraum. Cocktail hohlraums meeting the oxygen specification (<5% atomic fraction oxygen) demonstrated an increase in radiation of up to 7 eV, agreeing well with modeling. When applied to an indirectly driven fusion capsule absorbing ∼160kJ of x-ray energy, these data suggest that a hohlraum made from a suitably chosen uranium-based cocktail would have about 17% less wall losses and require about 10% less laser energy than a gold hohlraum o...
Review of Scientific Instruments | 2006
G. A. Rochau; J. E. Bailey; Gordon Andrew Chandler; T. J. Nash; Dan S. Nielsen; G. S. Dunham; O. F. Garcia; N. R. Joseph; J. W. Keister; M. J. Madlener; D. V. Morgan; K. Moy; M. Wu
Understanding of microchannel plate (MCP) detectors with x-ray energy is important for applications in high energy density research such as broadband imaging and x-ray spectroscopy. The relative sensitivity with photon energy for Cu∕Au coated MCPs in the range of 250eV<hν<5000eV has been measured at the National Synchrotron Light Source. A model of this response that includes contributions from secondary photoelectron yield and interactions with multiple channels is presented. This model is shown to agree with the measured MCP response to <20% over the majority of the spectral range using cross sections determined from an independent analysis of the MCP glass composition.
Review of Scientific Instruments | 2004
P. Lake; J. E. Bailey; G. A. Rochau; T. C. Moore; D. Petmecky; P. Gard
X-ray spectrometers used in high energy density plasma experiments must provide high time, space, and spectral resolution while overcoming the difficulties imposed by x-ray background, debris, and mechanical shocks. At the Z facility these problems are addressed using a suite of elliptical crystal spectrometers. The elliptical geometry isolates the detector from the line of sight with a slit placed at the elliptical focus, while the sensitivity enables locating the crystal 2–4 m from the plasma source. Space and time resolution are obtained by using an array of slits to project one dimensional plasma images onto the crystal and recording the spectrally dispersed images with a gated microchannel plate detector.
Review of Scientific Instruments | 2014
M. C. Jones; D. J. Ampleford; M. E. Cuneo; R. Hohlfelder; Christopher A. Jennings; Drew Johnson; B. Jones; M.R. Lopez; J. MacArthur; J. A. Mills; T. Preston; G. A. Rochau; M. E. Savage; D. Spencer; Daniel Brian Sinars; John L. Porter
Advancements have been made in the diagnostic techniques to measure accurately the total radiated x-ray yield and power from z-pinch implosion experiments at the Z machine with high accuracy. The Z machine is capable of outputting 2 MJ and 330 TW of x-ray yield and power, and accurately measuring these quantities is imperative. We will describe work over the past several years which include the development of new diagnostics, improvements to existing diagnostics, and implementation of automated data analysis routines. A set of experiments on the Z machine were conducted in which the load and machine configuration were held constant. During this shot series, it was observed that the total z-pinch x-ray emission power determined from the two common techniques for inferring the x-ray power, a Kimfol filtered x-ray diode diagnostic and the total power and energy diagnostic, gave 449 TW and 323 TW, respectively. Our analysis shows the latter to be the more accurate interpretation. More broadly, the comparison demonstrates the necessity to consider spectral response and field of view when inferring x-ray powers from z-pinch sources.
Physics of Plasmas | 2004
R. E. Olson; R. J. Leeper; A. Nobile; John A. Oertel; Gordon Andrew Chandler; K. Cochrane; S. C. Dropinski; S. C. Evans; S. W. Haan; J. L. Kaae; J. P. Knauer; K. Lash; L. P. Mix; A. Nikroo; G. A. Rochau; G. Rivera; C. Russell; Diana Grace Schroen; R. J. Sebring; D. L. Tanner; R. E. Turner; R. J. Wallace
The velocities and temperatures of shock waves generated by laser-driven hohlraum radiation fields have been measured in indirect-drive inertial confinement fusion (ICF) capsule ablator materials. Time-resolved measurements of the preheat temperature ahead of the shock front have been performed and included in the analysis. Measurements of the x-ray burnthrough of the ablation front and the ablator x-ray re-emission have also been made in the Cu-doped beryllium, polyimide, and Ge-doped CH ablator samples. The experiments utilize 15 beams of the University of Rochester Omega Laser [Soures et al., Phys. Plasmas 3, 2108 (1996)] to heat hohlraums to radiation temperatures of ∼120–200 eV. In the experiments, planar samples of ablator material are exposed to the hohlraum radiation field, generating shocks in the range of 10–50 Mbars. The experimental results are compared to integrated two-dimensional Lasnex [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Control. Fusion 2, 51 (1975)] calculations, in wh...
Review of Scientific Instruments | 2011
Daniel Brian Sinars; David Franklin Wenger; S. A. Pikuz; B. Jones; Matthias Geissel; Stephanie B. Hansen; C.A. Coverdale; David J. Ampleford; M. E. Cuneo; L. A. McPherson; G. A. Rochau
We describe a pair of time-integrated transmission spectrometers that are designed to survey 7-28 keV (1.9 to 0.43 Å) x-ray photons produced by experiments on the Sandia Z pulsed power facility. Each spectrometer uses a quartz 10-11 crystal in a Cauchois geometry with a slit to provide spatial resolution along one dimension. The spectrometers are located in the harsh environment of the Z vacuum chamber, which necessitates that their design be compact and rugged. Example data from calibration tests and Z experiments are shown that illustrate the utility of the instruments.