Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Loisel is active.

Publication


Featured researches published by G. Loisel.


Physics of Plasmas | 2014

ZAPP: The Z Astrophysical Plasma Properties Collaboration.

Gregory A. Rochau; J. E. Bailey; R. E. Falcon; G. Loisel; T. Nagayama; R. C. Mancini; I. Hall; D. E. Winget; M. H. Montgomery; Duane A. Liedahl

The Z Facility at Sandia National Laboratories [Matzen et al., Phys. Plasmas 12, 055503 (2005)] provides MJ-class x-ray sources that can emit powers >0.3 PW. This capability enables benchmark experiments of fundamental material properties in radiation-heated matter at conditions previously unattainable in the laboratory. Experiments on Z can produce uniform, long-lived, and large plasmas with volumes up to 20 cc, temperatures from 1–200 eV, and electron densities from 1017–23 cc−1. These unique characteristics and the ability to radiatively heat multiple experiments in a single shot have led to a new effort called the Z Astrophysical Plasma Properties (ZAPP) collaboration. The focus of the ZAPP collaboration is to reproduce the radiation and material characteristics of astrophysical plasmas as closely as possible in the laboratory and use detailed spectral measurements to strengthen models for atoms in plasmas. Specific issues under investigation include the LTE opacity of iron at stellar-interior conditi...


Astrophysics and Space Science | 2011

Radiative properties of stellar plasmas and open challenges

Sylvaine Turck-Chieze; G. Loisel; D. Gilles; L. Piau; C. Blancard; T. Blenski; M. Busquet; T. Caillaud; P. Cossé; F. Delahaye; G. Faussurier; J. Fariaut; F. Gilleron; Joyce Ann Guzik; J. Harris; D.P. Kilcrease; N.H. Magee; Jean-Christophe Pain; Q. Porcherot; M. Poirier; G. Soullier; C. J. Zeippen; S. Bastiani-Ceccotti; C. Reverdin; V. Silvert; F. Thais; B. Villette

The lifetime of solar-like stars, the envelope structure of more massive stars, and stellar acoustic frequencies largely depend on the radiative properties of the stellar plasma. Up to now, these complex quantities have been estimated only theoretically. The development of the powerful tools of helio- and astero- seismology has made it possible to gain insights on the interiors of stars. Consequently, increased emphasis is now placed on knowledge of the monochromatic opacity coefficients. Here we review how these radiative properties play a role, and where they are most important. We then concentrate specifically on the envelopes of β Cephei variable stars. We discuss the dispersion of eight different theoretical estimates of the monochromatic opacity spectrum and the challenges we need to face to check these calculations experimentally.


Physics of Plasmas | 2014

Control and diagnosis of temperature, density, and uniformity in x-ray heated iron/magnesium samples for opacity measurementsa)

T. Nagayama; J. E. Bailey; G. Loisel; Stephanie B. Hansen; Gregory A. Rochau; R. C. Mancini; J. J. MacFarlane; I. Golovkin

Experimental tests are in progress to evaluate the accuracy of the modeled iron opacity at solar interior conditions, in particular to better constrain the solar abundance problem [S. Basu and H. M. Antia, Phys. Rep. 457, 217 (2008)]. Here, we describe measurements addressing three of the key requirements for reliable opacity experiments: control of sample conditions, independent sample condition diagnostics, and verification of sample condition uniformity. The opacity samples consist of iron/magnesium layers tamped by plastic. By changing the plastic thicknesses, we have controlled the iron plasma conditions to reach (1) Te = 167 ± 3 eV and ne = (7.1 ± 1.5)× 1021 cm−3, (2) Te = 170 ± 2 eV and ne = (2.0 ± 0.2) × 1022 cm−3, and (3) Te = 196 ± 6 eV and ne = (3.8 ± 0.8) × 1022 cm−3, which were measured by magnesium tracer K-shell spectroscopy. The opacity sample non-uniformity was directly measured by a separate experiment where Al is mixed into the side of the sample facing the radiation source and Mg into ...


Review of Scientific Instruments | 2015

Analysis and implementation of a space resolving spherical crystal spectrometer for x-ray Thomson scattering experiments

Eric Harding; Tommy Ao; J. E. Bailey; G. Loisel; Daniel Brian Sinars; Matthias Geissel; G. A. Rochau; I. C. Smith

The application of a space-resolving spectrometer to X-ray Thomson Scattering (XRTS) experiments has the potential to advance the study of warm dense matter. This has motivated the design of a spherical crystal spectrometer, which is a doubly focusing geometry with an overall high sensitivity and the capability of providing high-resolution, space-resolved spectra. A detailed analysis of the image fluence and crystal throughput in this geometry is carried out and analytical estimates of these quantities are presented. This analysis informed the design of a new spectrometer intended for future XRTS experiments on the Z-machine. The new spectrometer collects 6 keV x-rays with a spherically bent Ge (422) crystal and focuses the collected x-rays onto the Rowland circle. The spectrometer was built and then tested with a foam target. The resulting high-quality spectra prove that a spherical spectrometer is a viable diagnostic for XRTS experiments.


Review of Scientific Instruments | 2012

A methodology for calibrating wavelength dependent spectral resolution for crystal spectrometersa)

G. Loisel; J. E. Bailey; G. A. Rochau; G. S. Dunham; L. B. Nielsen-Weber; C. R. Ball

High quality absorption spectroscopy measurements were recently achieved at the Sandia National Laboratories Z facility in the soft x-ray range. Detailed spectral resolution knowledge is a key requirement for their interpretation. We present a methodology for measuring the wavelength dependent crystal spectral resolution, with a particular focus on the 7-17 Å range. We apply this procedure to the case of 1st order resolution of a potassium acid phthalate (KAP) convex crystal spectrometer. One calibration issue is that inferring the crystal resolution requires that the x-ray source emission feature widths and spectral profiles are known. To this aim, we resolve Manson x-ray source Si, Al, and Mg Kα line profiles using a KAP crystal spectrometer in 2nd order to achieve relatively high resolution. This information is exploited to measure 1st order KAP resolving powers λ∕Δλ∼1100-1300 in the 7-10 Å wavelength range.


Physical Review E | 2016

Calibrated simulations of Z opacity experiments that reproduce the experimentally measured plasma conditions

T. Nagayama; J. E. Bailey; G. Loisel; G. A. Rochau; J. J. MacFarlane; Igor E. Golovkin

Recently, frequency-resolved iron opacity measurements at electron temperatures of 170-200 eV and electron densities of (0.7-4.0)×10(22)cm(-3) revealed a 30-400% disagreement with the calculated opacities [J. E. Bailey et al., Nature (London) 517, 56 (2015)]. The discrepancies have a high impact on astrophysics, atomic physics, and high-energy density physics, and it is important to verify our understanding of the experimental platform with simulations. Reliable simulations are challenging because the temporal and spatial evolution of the source radiation and of the sample plasma are both complex and incompletely diagnosed. In this article, we describe simulations that reproduce the measured temperature and density in recent iron opacity experiments performed at the Sandia National Laboratories Z facility. The time-dependent spectral irradiance at the sample is estimated using the measured time- and space-dependent source radiation distribution, in situ source-to-sample distance measurements, and a three-dimensional (3D) view-factor code. The inferred spectral irradiance is used to drive 1D sample radiation hydrodynamics simulations. The images recorded by slit-imaged space-resolved spectrometers are modeled by solving radiation transport of the source radiation through the sample. We find that the same drive radiation time history successfully reproduces the measured plasma conditions for eight different opacity experiments. These results provide a quantitative physical explanation for the observed dependence of both temperature and density on the sample configuration. Simulated spectral images for the experiments without the FeMg sample show quantitative agreement with the measured spectral images. The agreement in spectral profile, spatial profile, and brightness provides further confidence in our understanding of the backlight-radiation time history and image formation. These simulations bridge the static-uniform picture of the data interpretation and the dynamic-gradient reality of the experiments, and they will allow us to quantitatively assess the impact of effects neglected in the data interpretation.


Physics of Plasmas | 2017

Direct measurement of the inertial confinement time in a magnetically driven implosion

P. F. Knapp; M. R. Martin; Daniel H. Dolan; Kyle Robert Cochrane; D. Dalton; Jean-Paul Davis; Christopher A. Jennings; G. Loisel; D. H. Romero; I. C. Smith; E. P. Yu; M. R. Weis; Thomas R. Mattsson; R. D. McBride; Kyle Peterson; Jens Schwarz; Daniel Brian Sinars

We report on direct, radiographic measurement of the stagnation phase of a magnetically driven liner implosion. The liner is filled with liquid deuterium and imploded to a minimum radius of 440 μm (radial convergence ratio of 7.7) over 300 ns, achieving a density of ≈10 g/cm3. The measured confinement time is ≈14 ns, compared to 16 ns from 1D simulations. A comparison of measured density profiles with 1D and 2D simulations shows a deviation in the reflected shock trajectory and the liner areal density. Additionally, the magneto Rayleigh-Taylor instability causes enhanced compression with shorter confinement in the bubble region compared to the spikes. These effects combine to reduce the pressure-confinement time product, Pτ, by 25% compared to the simulations.


Review of Scientific Instruments | 2014

Parallax diagnostics of radiation source geometric dilution for iron opacity experimentsa)

T. Nagayama; J. E. Bailey; G. Loisel; G. A. Rochau; R. E. Falcon

Experimental tests are in progress to evaluate the accuracy of the modeled iron opacity at solar interior conditions [J. E. Bailey et al., Phys. Plasmas 16, 058101 (2009)]. The iron sample is placed on top of the Sandia National Laboratories z-pinch dynamic hohlraum (ZPDH) radiation source. The samples are heated to 150-200 eV electron temperatures and 7× 10(21)-4× 10(22) cm(-3) electron densities by the ZPDH radiation and backlit at its stagnation [T. Nagayama et al., Phys. Plasmas 21, 056502 (2014)]. The backlighter attenuated by the heated sample plasma is measured by four spectrometers along ±9° with respect to the z-pinch axis to infer the sample iron opacity. Here, we describe measurements of the source-to-sample distance that exploit the parallax of spectrometers that view the half-moon-shaped sample from ±9°. The measured sample temperature decreases with increased source-to-sample distance. This distance must be taken into account for understanding the sample heating.


Review of Scientific Instruments | 2016

Systematic search for spherical crystal X-ray microscopes matching 1–25 keV spectral line sources

M. Schollmeier; G. Loisel

Spherical-crystal microscopes are used as high-resolution imaging devices for monochromatic x-ray radiography or for imaging the source itself. Crystals and Miller indices (hkl) have to be matched such that the resulting lattice spacing d is close to half the spectral wavelength used for imaging, to fulfill the Bragg equation with a Bragg angle near 90∘ which reduces astigmatism. Only a few suitable crystal and spectral-line combinations have been identified for applications in the literature, suggesting that x-ray imaging using spherical crystals is constrained to a few chance matches. In this article, after performing a systematic, automated search over more than 9 × 106 possible combinations for x-ray energies between 1 and 25 keV, for six crystals with arbitrary Miller-index combinations hkl between 0 and 20, we show that a matching, efficient crystal and spectral-line pair can be found for almost every Heα or Kα x-ray source for the elements Ne to Sn. Using the data presented here it should be possible to find a suitable imaging combination using an x-ray source that is specifically selected for a particular purpose, instead of relying on the limited number of existing crystal imaging systems that have been identified to date.


Review of Scientific Instruments | 2012

X-ray grating spectrometer for opacity measurements in the 50 eV to 250 eV spectral range at the LULI 2000 laser facility

Charles Reverdin; Frédéric Thais; G. Loisel; Michel Busquet; S. Bastiani-Ceccotti; T. Blenski; Tony Caillaud; Jean-Eric Ducret; W. Foelsner; D. Gilles; F. Gilleron; Jean-Christophe Pain; M. Poirier; F. Serres; V. Silvert; G. Soullie; S. Turck-Chieze; Bruno Villette

An x-ray grating spectrometer was built in order to measure opacities in the 50 eV to 250 eV spectral range with an average spectral resolution ∼ 50. It has been used at the LULI-2000 laser facility at École Polytechnique (France) to measure the Δn = 0, n = 3 transitions of several elements with neighboring atomic number: Cr, Fe, Ni, and Cu in the same experimental conditions. Hence a spectrometer with a wide spectral range is required. This spectrometer features one line of sight looking through a heated sample at backlighter emission. It is outfitted with one toroidal condensing mirror and several flat mirrors cutting off higher energy photons. The spectral dispersion is obtained with a flatfield grating. Detection consists of a streak camera sensitive to soft x-ray radiation. Some experimental results showing the performance of this spectrometer are presented.

Collaboration


Dive into the G. Loisel's collaboration.

Top Co-Authors

Avatar

J. E. Bailey

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Stephanie B. Hansen

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. A. Rochau

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

T. Nagayama

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

D.P. Kilcrease

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. J. MacFarlane

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Fontes

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

F. Gilleron

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Carlos A. Iglesias

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge