Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. A. Shakeel Ansari is active.

Publication


Featured researches published by G. A. Shakeel Ansari.


Alcoholism: Clinical and Experimental Research | 2010

1H and 31P NMR Lipidome of Ethanol-Induced Fatty Liver

Harshica Fernando; Shakuntala Kondraganti; Kamlesh K. Bhopale; David E. Volk; Muniasamy Neerathilingam; Bhupendra S. Kaphalia; Bruce A. Luxon; Paul J. Boor; G. A. Shakeel Ansari

BACKGROUND  Hepatic steatosis (fatty liver), an early and reversible stage of alcoholic liver disease, is characterized by triglyceride deposition in hepatocytes, which can advance to steatohepatitis, fibrosis, cirrhosis, and ultimately to hepatocellular carcinoma. In the present work, we studied altered plasma and hepatic lipid metabolome (lipidome) to understand the mechanisms and lipid pattern of early-stage alcohol-induced-fatty liver. METHODS  Male Fischer 344 rats were fed 5% alcohol in a Lieber-DeCarli diet. Control rats were pair-fed an equivalent amount of maltose-dextrin. After 1 month, animals were killed and plasma collected. Livers were excised for morphological, immunohistochemical, and biochemical studies. The lipids from plasma and livers were extracted with methyl-tert-butyl ether and analyzed by 750/800 MHz proton nuclear magnetic resonance (¹H NMR) and phosphorus (³¹P) NMR spectroscopy on a 600 MHz spectrometer. The NMR data were then subjected to multivariate statistical analysis. RESULTS  Hematoxylin and Eosin and Oil Red O stained liver sections showed significant fatty infiltration. Immunohistochemical analysis of liver sections from ethanol-fed rats showed no inflammation (absence of CD3 positive cells) or oxidative stress (absence of malondialdehyde reactivity or 4-hydroxynonenal positive staining). Cluster analysis and principal component analysis of ¹H NMR data of lipid extracts of both plasma and livers showed a significant difference in the lipid metabolome of ethanol-fed versus control rats. ³¹P NMR data of liver lipid extracts showed significant changes in phospholipids similar to ¹H NMR data. ¹H NMR data of plasma and liver reflected several changes, while comparison of ¹H NMR and ³¹P NMR data offered a correlation among the phospholipids. CONCLUSIONS  Our results show that alcohol consumption alters metabolism of cholesterol, triglycerides, and phospholipids that could contribute to the development of fatty liver. These studies also indicate that fatty liver precedes oxidative stress and inflammation. The similarities observed in plasma and liver lipid profiles offer a potential methodology for detecting early-stage alcohol-induced fatty liver disease by analyzing the plasma lipid profile.


Toxicology and Applied Pharmacology | 2011

Lipidomic Changes in Rat Liver after Long-Term Exposure to Ethanol

Harshica Fernando; Kamlesh K. Bhopale; Shakuntala Kondraganti; Bhupendra S. Kaphalia; G. A. Shakeel Ansari

Alcoholic liver disease (ALD) is a serious health problem with significant morbidity and mortality. In this study we examined the progression of ALD along with lipidomic changes in rats fed ethanol for 2 and 3 months to understand the mechanism, and identify possible biomarkers. Male Fischer 344 rats were fed 5% ethanol or caloric equivalent of maltose-dextrin in a Lieber-DeCarli diet. Animals were killed at the end of 2 and 3 months and plasma and livers were collected. Portions of the liver were fixed for histological and immunohistological studies. Plasma and the liver lipids were extracted and analyzed by nuclear magnetic resonance (NMR) spectroscopy. A time dependent fatty infiltration was observed in the livers of ethanol-fed rats. Mild inflammation and oxidative stress were observed in some ethanol-fed rats at 3 months. The multivariate and principal component analysis of proton and phosphorus NMR spectroscopy data of extracted lipids from the plasma and livers showed segregation of ethanol-fed groups from the pair-fed controls. Significant hepatic lipids that were increased by ethanol exposure included fatty acids and triglycerides, whereas phosphatidylcholine (PC) decreased. However, both free fatty acids and PC decreased in the plasma. In liver lipids unsaturation of fatty acyl chains increased, contrary to plasma, where it decreased. Our studies confirm that over-accumulation of lipids in ethanol-induced liver steatosis accompanied by mild inflammation on long duration of ethanol exposure. Identified metabolic profile using NMR lipidomics could be further explored to establish biomarker signatures representing the etiopathogenesis, progression and/or severity of ALD.


Toxicology and Applied Pharmacology | 2013

Liver proteomics in progressive alcoholic steatosis

Harshica Fernando; John E. Wiktorowicz; Kizhake V. Soman; Bhupendra S. Kaphalia; M. Firoze Khan; G. A. Shakeel Ansari

Fatty liver is an early stage of alcoholic and nonalcoholic liver disease (ALD and NALD) that progresses to steatohepatitis and other irreversible conditions. In this study, we identified proteins that were differentially expressed in the livers of rats fed 5% ethanol in a Lieber-DeCarli diet daily for 1 and 3 months by discovery proteomics (two-dimensional gel electrophoresis and mass spectrometry) and non-parametric modeling (Multivariate Adaptive Regression Splines). Hepatic fatty infiltration was significantly higher in ethanol-fed animals as compared to controls, and more pronounced at 3 months of ethanol feeding. Discovery proteomics identified changes in the expression of proteins involved in alcohol, lipid, and amino acid metabolism after ethanol feeding. At 1 and 3 months, 12 and 15 different proteins were differentially expressed. Of the identified proteins, down regulation of alcohol dehydrogenase (-1.6) at 1 month and up regulation of aldehyde dehydrogenase (2.1) at 3 months could be a protective/adaptive mechanism against ethanol toxicity. In addition, betaine-homocysteine S-methyltransferase 2 a protein responsible for methionine metabolism and previously implicated in fatty liver development was significantly up regulated (1.4) at ethanol-induced fatty liver stage (1 month) while peroxiredoxin-1 was down regulated (-1.5) at late fatty liver stage (3 months). Nonparametric analysis of the protein spots yielded fewer proteins and narrowed the list of possible markers and identified d-dopachrome tautomerase (-1.7, at 3 months) as a possible marker for ethanol-induced early steatohepatitis. The observed differential regulation of proteins have potential to serve as biomarker signature for the detection of steatosis and its progression to steatohepatitis once validated in plasma/serum.


Toxicology Letters | 2010

1H NMR-based metabonomic investigation of tributyl phosphate exposure in rats

Muniasamy Neerathilingam; David E. Volk; Swapna Sarkar; Todd M. Alam; M. Kathleen Alam; G. A. Shakeel Ansari; Bruce A. Luxon

Tributyl phosphate (TBP) is a toxic organophosphorous compound widely used in many industrial applications, including significant usage in nuclear processing. The industrial application of this chemical is responsible for occupational exposure and environmental pollution. In this study, (1)H NMR-based metabonomics has been applied to investigate the metabolic response to TBP exposure. Male Sprague-Dawley rats were given a TBP-dose of 15 mg/kg body weight, followed by 24h urine collection, as was previously demonstrated for finding most of the intermediates of TBP. High-resolution (1)H NMR spectroscopy of urine samples in conjunction with statistical pattern recognition and compound identification allowed for the metabolic changes associated with TBP treatment to be identified. Discerning NMR spectral regions corresponding to three TBP metabolites, dibutyl phosphate (DBP), N-acetyl-(S-3-hydroxybutyl)-L-cysteine and N-acetyl-(S-3-oxobutyl)-L-cysteine, were identified in TBP-treated rats. In addition, the (1)H NMR spectra revealed TBP-induced variations of endogenous urinary metabolites including benzoate, urea, and trigonelline along with metabolites involved in the Krebs cycle including citrate, cis-aconitate, trans-aconitate, 2-oxoglutarate, succinate, and fumarate. These findings indicate that TBP induces a disturbance to the Krebs cycle energy metabolism and provides a biomarker signature of TBP exposure. We show that three metabolites of TBP, dibutylphosphate, N-acetyl-(S-3-hydroxybutyl)-L-cysteine and N-acetyl-(S-3-oxobutyl)-L-cysteine, which are not present in the control groups, are the most important factors in separating the TBP and control groups (p<0.0023), while the endogenous compounds 2-oxoglutarate, benzoate, fumarate, trigonelline, and cis-aconetate were also important (p<0.01).


Toxicology and Applied Pharmacology | 2010

Pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice after subchronic exposure to ethanol

Bhupendra S. Kaphalia; Kamlesh K. Bhopale; Shakuntala Kondraganti; Hai Wu; Paul J. Boor; G. A. Shakeel Ansari

Pancreatitis caused by activation of digestive zymogens in the exocrine pancreas is a serious chronic health problem in alcoholic patients. However, mechanism of alcoholic pancreatitis remains obscure due to lack of a suitable animal model. Earlier, we reported pancreatic injury and substantial increases in endogenous formation of fatty acid ethyl esters (FAEEs) in the pancreas of hepatic alcohol dehydrogenase (ADH)-deficient (ADH(-)) deer mice fed 4% ethanol. To understand the mechanism of alcoholic pancreatitis, we evaluated dose-dependent metabolism of ethanol and related pancreatic injury in ADH(-) and hepatic ADH-normal (ADH(+)) deer mice fed 1%, 2% or 3.5% ethanol via Lieber-DeCarli liquid diet daily for 2months. Blood alcohol concentration (BAC) was remarkably increased and the concentration was ∼1.5-fold greater in ADH(-) vs. ADH(+) deer mice fed 3.5% ethanol. At the end of the experiment, remarkable increases in pancreatic FAEEs and significant pancreatic injury indicated by the presence of prominent perinuclear space, pyknotic nuclei, apoptotic bodies and dilation of glandular ER were found only in ADH(-) deer mice fed 3.5% ethanol. This pancreatic injury was further supported by increased plasma lipase and pancreatic cathepsin B (a lysosomal hydrolase capable of activating trypsinogen), trypsinogen activation peptide (by-product of trypsinogen activation process) and glucose-regulated protein 78 (endoplasmic reticulum stress marker). These findings suggest that ADH-deficiency and high alcohol levels in the body are the key factors in ethanol-induced pancreatic injury. Therefore, determining how this early stage of pancreatic injury advances to inflammation stage could be important for understanding the mechanism(s) of alcoholic pancreatitis.


Metabolites | 2012

1H Nuclear Magnetic Resonance (NMR) Metabolomic Study of Chronic Organophosphate Exposure in Rats

Todd M. Alam; Muniasamy Neerathilingam; M. Kathleen Alam; David E. Volk; G. A. Shakeel Ansari; Swapna Sarkar; Bruce A. Luxon

1H NMR spectroscopy and chemometric analysis were used to characterize rat urine obtained after chronic exposure to either tributyl phosphate (TBP) or triphenyl phosphate (TPP). In this study, the daily dose exposure was 1.5 mg/kg body weight for TBP, or 2.0 mg/kg body weight for TPP, administered over a 15-week period. Orthogonal signal correction (OSC) -filtered partial least square discriminant analysis (OSC-PLSDA) was used to predict and classify exposure to these organophosphates. During the development of the model, the classification error was evaluated as a function of the number of latent variables. NMR spectral regions and corresponding metabolites important for determination of exposure type were identified using variable importance in projection (VIP) coefficients obtained from the OSC-PLSDA analysis. As expected, the model for classification of chronic (1.5–2.0 mg/kg body weight daily) TBP or TPP exposure was not as strong as the previously reported model developed for identifying acute (15–20 mg/kg body weight) exposure. The set of majorly impacted metabolites identified for chronic TBP or TPP exposure was slightly different than those metabolites previously identified for acute exposure. These metabolites were then mapped to different metabolite pathways and ranked, allowing the metabolic response to chronic organophosphate exposure to be addressed.


Toxicology and Applied Pharmacology | 2012

Hepatic lipid profiling of deer mice fed ethanol using 1H and 31P NMR spectroscopy: A dose-dependent subchronic study

Harshica Fernando; Kamlesh K. Bhopale; Paul J. Boor; G. A. Shakeel Ansari; Bhupendra S. Kaphalia

Chronic alcohol abuse is a 2nd major cause of liver disease resulting in significant morbidity and mortality. Alcoholic liver disease (ALD) is characterized by a wide spectrum of pathologies starting from fat accumulation (steatosis) in early reversible stage to inflammation with or without fibrosis and cirrhosis in later irreversible stages. Previously, we reported significant steatosis in the livers of hepatic alcohol dehydrogenase (ADH)-deficient (ADH⁻) vs. hepatic ADH-normal (ADH⁺) deer mice fed 4% ethanol daily for 2 months [Bhopale et al., 2006, Alcohol 39, 179-188]. However, ADH⁻ deer mice fed 4% ethanol also showed a significant mortality. Therefore, a dose-dependent study was conducted to understand the mechanism and identify lipid(s) involved in the development of ethanol-induced fatty liver. ADH⁻ and ADH⁺ deer mice fed 1, 2 or 3.5% ethanol daily for 2 months and fatty infiltration in the livers were evaluated by histology and by measuring dry weights of extracted lipids. Lipid metabolomic changes in extracted lipids were determined by proton (¹H) and ³¹phosphorus (³¹P) nuclear magnetic resonance (NMR) spectroscopy. The NMR data was analyzed by hierarchical clustering (HC) and principle component analysis (PCA) for pattern recognition. Extensive vacuolization by histology and significantly increased dry weights of total lipids found only in the livers of ADH⁻ deer mice fed 3.5% ethanol vs. pair-fed controls suggest a dose-dependent formation of fatty liver in ADH⁻ deer mouse model. Analysis of NMR data of ADH⁻ deer mice fed 3.5% ethanol vs. pair-fed controls shows increases for total cholesterol, esterified cholesterol, fatty acid methyl esters (FAMEs), triacylglycerides and unsaturation, and decreases for free cholesterol, phospholipids and allylic and diallylic protons. Certain classes of neutral lipids (cholesterol esters, fatty acyl chain (-COCH₂-) and FAMEs) were also mildly increased in ADH⁻ deer mice fed 1 or 2% ethanol. Only small increases were observed for allylic and diallylic protons, FAMEs and unsaturations in ADH⁺ deer mice fed 3.5% ethanol vs. pair-fed controls. PCA of NMR data showed increased clustering by gradual separation of ethanol-fed ADH⁻ deer mice groups from their respective pair-fed control groups and corresponding ethanol-fed ADH⁺ deer mice groups. Our data indicate that dose of ethanol and hepatic ADH deficiency are two key factors involved in initiation and progression of alcoholic fatty liver disease. Further studies on characterization of individual lipid entities and associated metabolic pathways altered in our deer mouse model after different durations of ethanol feeding could be important to delineate mechanism(s) and identify potential biomarker candidate(s) of early stage ALD.


PLOS ONE | 2014

Nitrosative stress and nitrated proteins in trichloroethene-mediated autoimmunity.

Gangduo Wang; Jianling Wang; Xuemei Luo; G. A. Shakeel Ansari; M. Firoze Khan

Exposure to trichloroethene (TCE), a ubiquitous environmental contaminant, has been linked to a variety of autoimmune diseases (ADs) including SLE, scleroderma and hepatitis. Mechanisms involved in the pathogenesis of ADs are largely unknown. Earlier studies from our laboratory in MRL+/+ mice suggested the contribution of oxidative/nitrosative stress in TCE-induced autoimmunity, and N-acetylcysteine (NAC) supplementation provided protection by attenuating oxidative stress. This study was undertaken to further evaluate the contribution of nitrosative stress in TCE-mediated autoimmunity and to identify proteins susceptible to nitrosative stress. Groups of female MRL +/+ mice were given TCE, NAC or TCE + NAC for 6 weeks (TCE, 10 mmol/kg, i.p., every 4th day; NAC, ∼250 mg/kg/day via drinking water). TCE exposure led to significant increases in serum anti-nuclear and anti-histone antibodies together with significant induction of iNOS and increased formation of nitrotyrosine (NT) in sera and livers. Proteomic analysis identified 14 additional nitrated proteins in the livers of TCE-treated mice. Furthermore, TCE exposure led to decreased GSH levels and increased activation of NF-κB. Remarkably, NAC supplementation not only ameliorated TCE-induced nitrosative stress as evident from decreased iNOS, NT, nitrated proteins, NF-κB p65 activation and increased GSH levels, but also the markers of autoimmunity, as evident from decreased levels of autoantibodies in the sera. These findings provide support to the role of nitrosative stress in TCE-mediated autoimmune response and identify specific nitrated proteins which could have autoimmune potential. Attenuation of TCE-induced autoimmunity in mice by NAC provides an approach for designing therapeutic strategies.


Toxicology and Applied Pharmacology | 2017

Autoimmune potential of perchloroethylene: Role of lipid-derived aldehydes

Gangduo Wang; Jianling Wang; G. A. Shakeel Ansari; M. Firoze Khan

ABSTRACT Tetrachloroethene (perchloroethylene, PCE), an ubiquitous environmental contaminant, has been implicated in inducing autoimmunity/autoimmune diseases (ADs), including systemic lupus erythematosus (SLE) and scleroderma in humans. However, experimental evidence suggesting the potential of PCE in mediating autoimmunity is lacking. This study was, therefore, undertaken to explore PCEs potential in inducing/exacerbating an autoimmune response. Six‐week old female MRL +/+ mice, in groups of 6 each, were treated with PCE (0.5 mg/ml) via drinking water for 12, 18 and 24 weeks and markers of autoimmunity and oxidative stress were evaluated. PCE exposure led to significant increases in serum anti‐nuclear antibodies (ANA), anti‐dsDNA and anti‐scleroderma‐70 (anti‐Scl‐70) antibodies at 18 weeks and, to a greater extent at 24 weeks, suggesting that PCE exposure exacerbated autoimmunity in our animal model. The increases in autoantibodies were associated with time‐dependent increases in malondialdehyde (MDA)‐protein adducts and their antibodies, as well as significantly decreased levels of antioxidants GSH and SOD. The splenocytes isolated from mice treated with PCE for 18 and 24 weeks showed greater Th17 cell proliferation and increased release of IL‐17 in culture supernatants following stimulation with MDA‐mouse serum albumin adducts, suggesting that MDA‐modified proteins may act as an immunologic trigger by activating Th17 cells and contribute to PCE‐mediated autoimmunity. Our studies thus provide an experimental evidence that PCE induces/exacerbates an autoimmune response and lipid‐derived aldehydes (such as MDA) contribute to this response. HighlightsPCE induced/exacerbated an autoimmune response in MRL +/+ mice.PCE led to increases in lipid‐derived aldehyde (LDA)‐protein adducts in MRL +/+ mice.LDAs contribute to PCE‐mediated autoimmunity via activating Th17 cells.


Journal of Drug and Alcohol Research | 2015

Alcoholic Steatosis in Different Strains of Rat: A Comparative Study.

Kamlesh K. Bhopale; Shakuntala Kondraganti; Harshica Fernando; Paul J. Boor; Bhupendra S. Kaphalia; G. A. Shakeel Ansari

Background Different strains of rats have been used to study alcoholic liver disease (ALD) while the reason for selecting a particular rat strain was not apparent. Purpose The aim of our study was to compare outbred (Wistar) and inbred (Fischer) strains to evaluate pathological, biochemical changes, and gene expression differences associated with ethanol-induced early hepatic steatosis. Study Design Male Wistar and Fischer-344 rats were pair-fed for 6 weeks with or without 5% ethanol in Lieber-DeCarli liquid diet. Livers were analyzed for histological and lipid-related differences. Results Hepatic midzonal steatosis was mainly found in Wistar rats while Fischer rats showed mostly pericentral steatosis. Increased hepatic steatosis in ethanol-fed Wistar rats is supported by increases in lipids with related genes and transcription factors involved in fatty acid and triglyceride synthesis. Conclusion Our data showed that Fischer rats are relatively less prone to ethanol-mediated steatosis with pericentral lipid deposition pattern in the liver which is similar to humans and show no trace level of lipid accumulation in pair-fed controls as observed in Wistar (outbred) strain. Therefore, Fischer rats are better suited for lipid studies in an early development of ALD.

Collaboration


Dive into the G. A. Shakeel Ansari's collaboration.

Top Co-Authors

Avatar

Bhupendra S. Kaphalia

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Kamlesh K. Bhopale

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Bruce A. Luxon

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

David E. Volk

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Harshica Fernando

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Muniasamy Neerathilingam

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

M. Firoze Khan

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Paul J. Boor

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Shakuntala Kondraganti

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Todd M. Alam

Sandia National Laboratories

View shared research outputs
Researchain Logo
Decentralizing Knowledge