G. Abadal
Autonomous University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. Abadal.
IEEE Electron Device Letters | 2008
J. Verd; A. Uranga; G. Abadal; J. Teva; F. Torres; J.L. Lopez; E. Perez-Murano; Jaume Esteve; N. Barniol
This letter presents the design, fabrication, and demonstration of a CMOS/microelectromechanical system (MEMS) electrostatically self-excited resonator based on a submicrometer-scale cantilever with ~1 ag/Hz mass sensitivity. The mechanical resonator is the frequency-determining element of an oscillator circuit monolithically integrated and implemented in a commercial 0.35 mum CMOS process. The oscillator is based on a Pierce topology adapted for the MEMS resonator that presents a mechanical resonance frequency of ~6 MHz, a relative low quality factor of 100, and a large motional resistance of ~25 M. The MEMS oscillator has a frequency stability of ~1.6 Hz resulting in a mass resolution of ~1 ag (1 ag = 10-18 g in air conditions.
Nanotechnology | 2001
G. Abadal; Zachary James Davis; B Helbo; Xavier Borrisé; R. Ruiz; Anja Boisen; F. Campabadal; Jaume Esteve; E. Figueras; Francesc Pérez-Murano; N. Barniol
A simple linear electromechanical model for an electrostatically driven resonating cantilever is derived. The model has been developed in order to determine dynamic quantities such as the capacitive current flowing through the cantilever-driver system at the resonance frequency, and it allows us to calculate static magnitudes such as position and voltage of collapse or the voltage versus deflection characteristic. The model is used to demonstrate the theoretical sensitivity on the attogram scale of a mass sensor based on a nanometre-scale cantilever, and to analyse the effect of an extra feedback loop in the control circuit to increase the Q factor.
Applied Physics Letters | 2000
John A. Dagata; Francesc Pérez-Murano; G. Abadal; K Morimoto; Takahito Inoue; J Itoh; Hideaki Yokoyama
Previous descriptions of scanned probe oxidation kinetics involved implicit assumptions that one-dimensional, steady-state models apply for arbitrary values of applied voltage and pulse duration. These assumptions have led to inconsistent interpretations regarding the fundamental processes that contribute to control of oxide growth rate. We propose a model that includes a temporal crossover of the system from transient to steady-state growth and a spatial crossover from predominantly vertical to coupled lateral growth. The model provides an excellent fit of available experimental data.
Applied Physics Letters | 2005
Esko Forsen; G. Abadal; Sara Ghatnekar-Nilsson; J. Teva; J. Verd; Rasmus Sandberg; Winnie Edith Svendsen; Francesc Pérez-Murano; J. Esteve; E. Figueras; F. Campabadal; Lars Montelius; N. Barniol; Anja Boisen
Nanomechanical resonators have been monolithically integrated on preprocessed complementary metal-oxide-semiconductor (CMOS) chips. Fabricated resonator systems have been designed to have resonance frequencies up to 1.5 MHz. The systems have been characterized in ambient air and vacuum conditions and display ultrasensitive mass detection in air. A mass sensitivity of 4 ag/Hz has been determined in air by placing a single glycerine drop, having a measured weight of 57 fg, at the apex of a cantilever and subsequently measuring a frequency shift of 14.8 kHz. CMOS integration enables electrostatic excitation, capacitive detection, and amplification of the resonance signal directly on the chip.
Journal of Micromechanics and Microengineering | 2009
J.L. Lopez; J. Verd; J. Teva; G. Murillo; J. Giner; F. Torres; A. Uranga; G. Abadal; N. Barniol
Integration of electrostatically driven and capacitively transduced MEMS resonators in commercial CMOS technologies is discussed. A figure of merit to study the performance of different structural layers and different technologies is defined. High frequency (HF) and very high frequency (VHF) resonance MEMS metal resonators are fabricated on a deep submicron 0.18 µm commercial CMOS technology and are characterized using electrical tests without amplification, demonstrating the applicability of the MEMS fabrication process for future technologies. Moreover, the fabricated devices show comparable performance in terms of Q × fres with previously presented MEMS resonators, whereas the small gap allows obtaining a low motional resistance with a single resonator approach.
Journal of Applied Physics | 1995
Francesc Pérez-Murano; G. Abadal; N. Barniol; X. Aymerich; J. Servat; Pau Gorostiza; Fausto Sanz
The nanometer‐scale oxidation of Si(100) surfaces in air is performed with an atomic force microscope working in tapping mode. Applying a positive voltage to the sample with respect to the tip, two kinds of modifications are induced on the sample: grown silicon oxide mounds less than 5 nm high and mounds higher than 10 nm (which are assumed to be gold depositions). The threshold voltage necessary to produce the modification is studied as a function of the average tip‐to‐sample distance.
Ultramicroscopy | 2003
Zachary James Davis; G. Abadal; Ole Hansen; X. Borisé; N. Barniol; Francesc Pérez-Murano; Anja Boisen
Nanolithography by local anodic oxidation of surfaces using atomic force microscopy (AFM) has proven to be more reproducible when using dynamic, non-contact mode. Hereby, the tip/sample interaction forces are reduced dramatically compared to contact mode, and thus tip wear is greatly reduced. Anodic oxidation of Al can be used for fabricating nanomechanical systems, by using the Al oxide as a highly selective dry etching mask. In our experiments, areas as large as 2 micro m x 3 micro m have been oxidized repeatedly without any sign of tip-wear. Furthermore, line widths down to 10nm have been routinely obtained, by optimization of AFM parameters, such as tip/sample distance, voltage and scan speed. Finally, AFM oxidation experiments have been performed on CMOS processed chips, demonstrating the first steps of fabricating fully functional nanomechanical devices.
IEEE\/ASME Journal of Microelectromechanical Systems | 2005
J. Verd; G. Abadal; J. Teva; Maria Villarroya Gaudo; A. Uranga; Xavier Borrisé; F. Campabadal; Jaume Esteve; Eduardo Figueras Costa; Francesc Pérez-Murano; Zachary James Davis; Esko Forsen; Anja Boisen; N. Barniol
In this paper, we report on the main aspects of the design, fabrication, and performance of a microelectromechanical system constituted by a mechanical submicrometer scale resonator (cantilever) and the readout circuitry used for monitoring its oscillation through the detection of the capacitive current. The CMOS circuitry is monolithically integrated with the mechanical resonator by a technology that allows the combination of standard CMOS processes and novel nanofabrication methods. The integrated system constitutes an example of a submicroelectromechanical system to be used as a cantilever-based mass sensor with both a high sensitivity and a high spatial resolution (on the order of 10/sup -18/ g and 300 nm, respectively). Experimental results on the electrical characterization of the resonance curve of the cantilever through the integrated CMOS readout circuit are shown.
Applied Physics Letters | 2007
J. Verd; A. Uranga; G. Abadal; J. Teva; F. Torres; Francesc Pérez-Murano; J. Fraxedas; Jaume Esteve; N. Barniol
Monolithic mass sensors for ultrasensitive mass detection in air conditions have been fabricated using a conventional 0.35μm complementary metal-oxide-semiconductor (CMOS) process. The mass sensors are based on electrostatically excited submicrometer scale cantilevers integrated with CMOS electronics. The devices have been calibrated obtaining an experimental sensitivity of 6×10−11g∕cm2Hz equivalent to 0.9ag∕Hz for locally deposited mass. Results from time-resolved mass measurements are also presented. An evaluation of the mass resolution have been performed obtaining a value of 2.4×10−17g in air conditions, resulting in an improvement of these devices from previous works in terms of sensitivity, resolution, and fabrication process complexity.
IEEE Electron Device Letters | 2009
J.L. Lopez; J. Verd; A. Uranga; J. Giner; G. Murillo; Francesc Torres; G. Abadal; N. Barniol
This letter presents the design, fabrication, and demonstration of a CMOS-MEMS filter based on two high-Q submicrometer-scale clamped-clamped beam resonators with resonance frequency around 22 MHz. The MEMS resonators are fabricated with a 0.35-mum CMOS process and monolithically integrated with an on-chip differential amplifier. The CMOS-MEMS resonator shows high-quality factors of 227 in air conditions and 4400 in a vacuum for a bias voltage of 5 V. In air conditions, the CMOS-MEMS parallel filter presents a programmable bandwidth from 100 to 200 kHz with a <1-dB ripple. In a vacuum, the filter presents a stop-band attenuation of 37 dB and a shape factor as low as 2.5 for a CMOS-compatible bias voltage of 5 V, demonstrating competitive performance compared with the state of the art of not fully integrated MEMS filters.