Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Buzsáki is active.

Publication


Featured researches published by G. Buzsáki.


Experimental Brain Research | 1990

Relationship of neuronal vulnerability and calcium binding protein immunoreactivity in ischemia

T. F. Freund; G. Buzsáki; A. Leon; Kenneth G. Baimbridge; Peter Somogyi

SummaryThe relationship between neuronal calcium binding protein content (calbindin D28K: CaBP and parvalbumin : PV) and vulnerability to ischemia was studied in different regions of the rat brain using the four vessel occlusion model of complete forebrain ischemia. The areas studied, i.e. the hippocampal formation, neocortex, neostriatum and reticular thalamic nucleus (RTN), show a characteristic pattern of CaBP and PV distribution, and are involved in ischemic damage to different degrees. In the hippocampal formation CaBP is present in dentate granule cells and in a subpopulation of the CA1 pyramidal cells, the latter being the most and the former the least vulnerable to ischemia. Non-pyramidal cells containing CaBP in these regions survive ischemia, whereas PV-containing non-pyramidal cells in the CA1 region are occasionally lost. Hilar somatostatin-containing cells and CA3 pyramidal cells contain neither PV nor CaBP. Nevertheless, the latter are resistant to ischemia and the former is the first population of cells that undergoes degeneration. Supragranular pyramidal neurons containing CaBP are the most vulnerable cell group in the sensory neocortex. In the RTN the degenerating neurons contain both PV and CaBP. In the neostriatum, ischemic damage involves both CaBP-positive and negative medium spiny neurons, although the degeneration always starts in the dorsolateral neostriatum containing relatively few CaBP-positive cells. The giant cholinergic interneurons of the striatum contain neither CaBP nor PV, and they are the most resistant cell type in this area. These examples suggest the lack of a consistent and systematic relationship between neuronal CaBP or PV content and ischemic vulnerability. It appears that some populations of cells containing CaBP or PV are more predisposed to ischemic cell death than neurons lacking these proteins. These neurons may express high levels of calcium binding proteins because their normal activity may involve a high rate of calcium uptake and/or intraneuronal release.


Neuroscience | 1990

Petit mal epilepsy and parkinsonian tremor: Hypothesis of a common pacemaker

G. Buzsáki; A. Smith; S. Berger; Lisa J. Fisher; Fred H. Gage; G. Aston-Jones; F.E. Bloom

Rhythmic oscillation in neuronal systems may serve physiological purposes or may interfere with normal functions of the brain. In disorders of petit mal epilepsy and parkinsonian tremor, centrally and peripherally observable rhythmic patterns are due to network oscillations of thalamocortical cells. This article reviews the afferent mechanisms that might be critically involved in controlling the ionic conductances of thalamic neurons in the behaving organism. We propose that during active behavior the subcortical aminergic and cholinergic inputs to the thalamus act as anti-burst and anti-oscillation mechanisms. We suggest further that the thalamopetal GABAergic inputs (pars reticulata of substantia nigra, entopeduncular nucleus, pallidum) are burst- and oscillation-promoting systems, whose output is controlled by the striatum. Experimental or disease-related decrease of the striatal dopamine levels is hypothesized to increase the efficacy of the GABAergic burst-promoting systems resulting in rhythmic network oscillation of thalamocortical neurons during rest. The recognition of the overlapping neuronal mechanisms in petit mal epilepsy and parkinsonian tremor, and the multistage control of thalamic oscillation suggests that drugs effectively used in petit mal attacks may be effective in levodopa-refractory parkinsonian tremor, and conversely, epileptic patients may benefit from drugs acting on the extrapyramidal system.


Neuroscience | 1990

Nerve growth factor infusions combined with fetal hippocampal grafts enhance reconstruction of the lesioned septohippocampal projection

Mark H. Tuszynski; G. Buzsáki; Fred H. Gage

A combination of intracerebral grafting and intraventricular infusion of nerve growth factor was used to attempt to reconstruct the cholinergic component of the septohippocampal pathway following fimbria-fornix lesions in the rat. Four groups were tested: lesion only, lesion plus fetal hippocampal graft, lesion plus nerve growth factor, and lesion plus graft plus nerve growth factor. Choline acetyltransferase immunoreactivity, acetylcholinesterase fiber staining and behavior-dependent theta activity on electroencephalogram were used to assess the extent of pathway reconstruction. Nerve growth factor was infused for the first two weeks following the fimbria-fornix lesion, while electrophysiological measurements and histological analysis were conducted six to eight months later. The lesion plus graft plus nerve growth factor infusion group had long-term savings of choline acetyltransferase-immunoreactive cells as compared to the lesion only or lesion plus graft groups. In addition the lesion plus graft plus nerve growth factor infusion group had more extensive reinnervation of the hippocampus compared to all other groups. Behavioral-dependent theta activity on electroencephalogram was observed in some animals of both lesion plus graft and lesion plus graft plus nerve growth factor infusion groups, but not in other groups; however, unlike intact animals, the restored theta could be blocked completely by scopalamine. These results demonstrate that a combination of short-term intraventricular nerve growth factor infusion and fetal hippocampal grafts enhances reconstruction of the damaged septohippocampal circuit.


Neuroscience | 1989

Neuronal activity in the subcortically denervated hippocampus: a chronic model for epilepsy.

G. Buzsáki; G Ponomareff; F. Bayardo; R. Ruiz; Fred H. Gage

Spontaneous and evoked field potentials and cellular discharges were studied in the subcortically denervated hippocampus of the freely moving rat. The fimbria fornix, the ventral hippocampal commissure, and the supracallosal afferent fibers were removed by aspiration, and recordings were made 3-5 months after the lesion. Two types of spontaneous interictal spikes were observed. Type 1 interictal spike had identical depth distribution to physiological sharp waves but they were shorter in duration (less than 40 ms), larger in amplitude (greater than 2.5 mV) and population spikes were riding on the main deflection. Type 2 interictal spikes were negative in the stratum oriens and positive in the pyramidal layer and stratum radiatum of both CA1 and CA3. The amplitude of both types of interictal spikes could exceed 6 mV. We suggest that interictal spikes were initiated randomly in different subpopulations of the CA2-3 region and the location of the initiating population burst determined the polarity and amplitude of the extracellular interictal spike. Repetitive stimulation of the perforant path (5 Hz, 6 s) evoked markedly uniform afterdischarges in both intact and fimbria fornix-deprived rats. The threshold of afterdischarges was significantly lower, the seizure spread to the contralateral hippocampus was slower, and secondary afterdischarges lasted significantly longer in the lesioned rats. We suggest that under physiological conditions the electrical stability of the hippocampus is ensured by the feed-forward inhibitory action of subcortical afferents. Removal of tonic inhibitory influences and/or sprouting of local axon collaterals allows extreme synchronization and reverberation of information in the entorhinal-hippocampal-entorhinal cortex circuitry. The presence of interictal spikes and increased susceptibility to seizures for several months after the lesion offers the fimbria-fornix-deprived hippocampus a useful chronic preparation to study the mechanisms of limbic epilepsy.


Experimental Brain Research | 1989

Ischemia-induced changes in the electrical activity of the hippocampus.

G. Buzsáki; T. F. Freund; F. Bayardo; Peter Somogyi

SummaryConsequences of transient (15–20 min) ischemia on the neuronal activity of the dentate gyrus and hippocampal CA 1 region were investigated in chronically implanted Sprague-Dawley rats. Forebrain ischemia was produced by occlusion of the carotids for 15 or 20 min, following cauterization of the vertebral arteries. Following the release of the carotids, both spontaneous and evoked activity showed a steady but partial recovery, reaching a maximum 12 to 24 h after the ischemic insult. From this plateau, both the power of rhythmic slow activity recorded during walking and the power of slow delta activity obtained during alert immobility decreased monotonically, with large changes occuring between postischemic days 2 and 4. The changes in spontaneous activity were accompanied by a decrease and eventual disappearance of the Schaffer collateral evoked responses in CA 1. Perforant path volleys were less efficient in activating the granule cells following ischemia compared to baseline levels. This decreased responsiveness was paralleled by a relative impairment of paired pulse depression. Neurophysiological signs of spontaneous or evoked neuronal hyperexcitability were not observed at any time point during the 8 postischemic days. Neuronal damage in the CA 1 region varied from moderate to complete loss of pyramidal cells. In addition, degenerating neurons were also observed in the hilus of the dentate gyrus. These findings do not support the “overwork” version of the excitoxic hypothesis of delayed neuronal damage and indicate that the cause of ischemic cell death should be sought in factors other than neuronal hyperactivity.


Neuroscience | 1990

Spike-and-wave neocortical patterns in rats : genetic and aminergic control

G. Buzsáki; I. Laszlovszky; A. Lajtha; Csaba Vadasz

Spontaneously occurring and drug-induced high voltage spike-and-wave electroencephalogram patterns were examined in inbred rats of the Fischer 344 and Buffalo strains and of the random-bred Sprague-Dawley strain at different ages. In addition, tyrosine hydroxylase activity and dopamine D2 receptor density were determined in the substantia nigra, corpus striatum, olfactory tubercle and ponsmedulla areas of Fisher 344 and Buffalo animals. High voltage spike-and-wave episodes were present in 87.5% of the 3-month-old and in 100% of the older Fischer 344 rats. High voltage spike-and-wave episodes were completely absent in 3-month-old Buffalo and Sprague-Dawley animals but could be induced by systemic injection of pentylenetetrazol and at an older age they appeared in 58.3% (12-month) and 71.4% (greater than 26-month) of the subjects of these strains. The incidence and duration of high voltage spike-and-wave episodes were significantly higher/longer in Fischer 344 rats than in the age-matched Buffalo and Sprague-Dawley animals. The dopamine blocker acepromazine induced a several-fold increase of the incidence and duration of high voltage spike-and-wave episodes in 3-month-old Fischer 344 rats, but failed to induce high voltage spike-and-wave episodes in Buffalo animals at this age. However, acepromazine also triggered high voltage spike-and-wave episodes in Buffalo rats when they were pretreated with subthreshold doses of pentylenetetrazol. Tyrosine hydroxylase activity was significantly higher in the substantia nigra, corpus striatum and olfactory tubercle of the Fischer 344 strain than in Buffalo rats. The higher tyrosine hydroxylase activity was paralleled with significantly higher D2 binding values in the corpus striatum and olfactory tubercle of Fischer 344 rats. These findings suggest that the neocortical high voltage spike-and-wave phenotype is genetically mediated and that the inbred Fischer 344 and Buffalo rats with defined bilineal origin will facilitate future works aimed at the identification of genetic elements involved in the generation of neocortical high voltage spike-and-wave episodes. The significant genotype x age interaction supports the suggestion, however, that high voltage spike-and-wave episodes are likely to be influenced by more than one gene; some of them are probably related to the regulation of brain aminergic systems.


EXS | 1989

The cholinergic nucleus basalis: A key structure in neocortical arousal

G. Buzsáki; Fred H. Gage

Single unit studies indicate that increased activity in the cholinergic nucleus basalis (NB) correlates with behavioral activation and neocortical desynchronization. Lesions of the NB result in neocortical slow delta waves, similar to the action of antimuscarinic drugs, and the lesion releases the oscillation of GABAergic neurons in the reticular nucleus of the thalamus, resulting in high voltage neocortical spindles. Extensive damage of the thalamus does not produce slowing of neocortical activity but it abolishes neocortical spindles. We suggest that the NB plays a key role in neocortical activation by a) blocking the afterhyperpolarizations and accommodation in neocortical pyramidal neurons and b) suppressing the rhythm generation in the reticular nucleus-thalamocortical circuitry. We further suggest that the NB system may serve as a structural basis for the concept of the generalized activation described by Moruzzi and Magoun (1949).


Neurobiology of Aging | 1993

Morphologic alterations of choline acetyltransferase-positive neurons in the basal forebrain of aged behaviorally characterized fisher 344 rats

David M. Armstrong; Roxanne Sheffield; G. Buzsáki; Karen S. Chen; Louis B. Hersh; Bruce D. Nearing; Fred H. Gage

We examined Fisher 344 female rats aged 6, 27, and 33 months old. Prior to sacrifice and morphometric analyses of forebrain cholinergic neurons all rats underwent behavioral characterization in a spatial learning task using the Morris water maze. Performance on the spatial task permitted subsequent grouping of the 27- and 33-month-old animals into impaired or nonimpaired groups. Importantly, the percentage of animals that displayed spatial impairments increased sharply with advancing age. Quantitative assessment of the size and density of choline acetyltransferase (ChAT)-positive neurons throughout the basal forebrain revealed a significant enlargement of forebrain cholinergic neurons within 27-month-old nonimpaired rats compared to 6-month-old rats and 27- and 33-month-old impaired animals. This increase in size was most noted in the medial septum and nucleus of the diagonal band. Significant decreases in the density of ChAT-positive neurons was observed only in the nucleus of the diagonal band of 27-month-old impaired rats compared to 6-month-old controls. Although the significance of enlarged forebrain cholinergic neurons is unclear, we discuss the possibility that within aged rodents neuronal swelling is an active event and represents an early manifestation of the aging process and may constitute a restorative and/or compensatory event in that these rats are relatively asymptomatic with respect to their behavioral deficits. In addition, we discuss in some detail various technical and life effect issues which may vary the outcome of investigations of aged rodents.


Journal of Neuroscience Methods | 1989

Multisite recording of brain field potentials and unit activity in freely moving rats

G. Buzsáki; R.G. Bickford; L.J. Ryan; S. Young; O. Prohaska; R.J. Mandel; Fred H. Gage

A technique has been developed to record from 16 different brain sites of the freely moving rat using subminiature MOSFET preamplifiers. The high input impedance, small size, durability and light weight of the amplifiers and connecting cable allows high quality multisite recording of field potentials and unit activity. In addition, a movable headstage for positioning multiple microelectrodes is described. The compact recording system permits one to construct neocortical EEG maps, instant depth profiles of evoked and spontaneous field data, and to study neuronal synchrony of distant cell populations.


Neuroscience | 1988

Alterations in excitatory and gabaergic inhibitory connections in hippocampal transplants

T.F. Freund; G. Buzsáki

Solid pieces of embryonic hippocampal tissue were implanted in a cavity formed by aspiration of the fimbria-fornix and the overlying cingulate cortex in adult rats. Six to 8 months after the transplantation, chronic recording electrodes were implanted into the graft and the host hippocampi for the recording of electroencephalogram and unit activity in the freely moving animal. Irregularly occurring sharp waves or electroencephalogram spikes and concurrent synchronous discharge of large groups of neurons dominated the electrical activity of the grafts, in contrast to the situation in normal animals. Light microscopy and GABA immunocytochemistry in the grafts revealed that the three major cell types of the hippocampal formation, i.e. pyramidal neurons, dentate granule cells and GABA-immunoreactive interneurons were present in the hippocampal grafts. At the ultrastructural level, however, significant alterations in connectivity were observed. The most striking finding was the absence or sparse occurrence of synapses on the axon initial segments of pyramidal neurons. The axon initial segments are normally densely covered by GABAergic synapses derived from a specialized type of interneuron, the chandelier or axo-axonic cell. On the other hand, numerous GABA-immunoreactive terminals were found in synaptic contact with somata of pyramidal neurons, suggesting that other types of GABAergic interneurons and their efferent connections may have developed in a normal manner. The cell bodies of pyramidal neurons received, in addition, several asymmetric synapses from GABA-negative terminals. These presumably excitatory synapses are not present on the somata of pyramidal cells in the normally developing hippocampus. We hypothesize that the somatic excitatory synapses originate, at least in part, from the axon collaterals of the neighbouring pyramidal cells in the graft. We suggest that the hyperexcitability of the neuronal circuitry within the graft is due to reduced inhibition (lack of axo-axonic synapses) coupled with increased collateral excitation of the pyramidal neurons.

Collaboration


Dive into the G. Buzsáki's collaboration.

Top Co-Authors

Avatar

Fred H. Gage

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

David M. Armstrong

Lankenau Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Karen S. Chen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Bayardo

University of California

View shared research outputs
Top Co-Authors

Avatar

G Ponomareff

University of California

View shared research outputs
Top Co-Authors

Avatar

Lan S. Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Leon J. Thal

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R.G. Bickford

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge