G. C. Tettamanzi
University of New South Wales
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. C. Tettamanzi.
Nanotechnology | 2012
Enrico Prati; Marco De Michielis; Matteo Belli; Simone Cocco; M. Fanciulli; Dharmraj Kotekar-Patil; M. Ruoff; Dieter P. Kern; D. A. Wharam; J. Verduijn; G. C. Tettamanzi; S. Rogge; B. Roche; Romain Wacquez; X. Jehl; M. Vinet; M. Sanquer
We report the electronic transport on n-type silicon single electron transistors (SETs) fabricated in complementary metal oxide semiconductor (CMOS) technology. The n-type metal oxide silicon SETs (n-MOSSETs) are built within a pre-industrial fully depleted silicon on insulator (FDSOI) technology with a silicon thickness down to 10 nm on 200 mm wafers. The nominal channel size of 20 × 20 nm(2) is obtained by employing electron beam lithography for active and gate level patterning. The Coulomb blockade stability diagram is precisely resolved at 4.2 K and it exhibits large addition energies of tens of meV. The confinement of the electrons in the quantum dot has been modeled by using a current spin density functional theory (CS-DFT) method. CMOS technology enables massive production of SETs for ultimate nanoelectronic and quantum variable based devices.
New Journal of Physics | 2014
G. C. Tettamanzi; Romain Wacquez; S. Rogge
Presented in this paper is a proof-of-concept for a new approach to single electron pumping based on a single atom transistor. By charge pumping electrons through an isolated dopant atom in silicon, precise currents of up to 160 pA at 1 GHz are generated, even if operating at 4.2 K, with no magnetic field applied, and only when one barrier is addressed by sinusoidal voltage cycles.
Physical Review Letters | 2011
G. P. Lansbergen; Rajib Rahman; J. Verduijn; G. C. Tettamanzi; Nadine Collaert; S. Biesemans; Gerhard Klimeck; Lloyd C. L. Hollenberg; S. Rogge
We report the observation of lifetime-enhanced transport (LET) based on perpendicular valleys in silicon by transport spectroscopy measurements of a two-electron system in a silicon transistor. The LET is manifested as a peculiar current step in the stability diagram due to a forbidden transition between an excited state and any of the lower energy states due to perpendicular valley (and spin) configurations, offering an additional current path. By employing a detailed temperature dependence study in combination with a rate equation model, we estimate the lifetime of this particular state to exceed 48 ns. The two-electron spin-valley configurations of all relevant confined quantum states in our device were obtained by a large-scale atomistic tight-binding simulation. The LET acts as a signature of the complicated valley physics in silicon: a feature that becomes increasingly important in silicon quantum devices.
Applied Physics Letters | 2010
B. C. Johnson; G. C. Tettamanzi; Andrew Alves; S. Thompson; Changyi Yang; J. Verduijn; Jan A. Mol; Romain Wacquez; M. Vinet; M. Sanquer; S. Rogge; D.N. Jamieson
We demonstrate single dopant implantation into the channel of a silicon nanoscale metal-oxide-semiconductor field-effect-transistor. This is achieved by monitoring the drain current modulation during ion irradiation. Deterministic doping is crucial for overcoming dopant number variability in present nanoscale devices and for exploiting single atom degrees of freedom. The two main ion stopping processes that induce drain current modulation are examined. We employ 500 keV He ions, in which electronic stopping is dominant, leading to discrete increases in drain current and 14 keV P dopants for which nuclear stopping is dominant leading to discrete decreases in drain current.
Physical Review Letters | 2012
G. C. Tettamanzi; J. Verduijn; G. P. Lansbergen; M. Blaauboer; M. J. Calderon; Ramón Aguado; S. Rogge
Semiconductor devices have been scaled to the point that transport can be dominated by only a single dopant atom. As a result, in a Si fin-type field effect transistor Kondo physics can govern transport when one electron is bound to the single dopant. Orbital (valley) degrees of freedom, apart from the standard spin, strongly modify the Kondo effect in such systems. Owing to the small size and the s-like orbital symmetry of the ground state of the dopant, these orbital degrees of freedom do not couple to external magnetic fields which allows us to tune the symmetry of the Kondo effect. Here we study this tunable Kondo effect and demonstrate experimentally a symmetry crossover from an SU(4) ground state to a pure orbital SU(2) ground state as a function of magnetic field. Our claim is supported by theoretical calculations that unambiguously show that the SU(2) symmetric case corresponds to a pure valley Kondo effect of fully polarized electrons.
Physical Review B | 2011
Rajib Rahman; G. P. Lansbergen; J. Verduijn; G. C. Tettamanzi; Seung H. Park; Nadine Collaert; S. Biesemans; Gerhard Klimeck; Lloyd C. L. Hollenberg; S. Rogge
We present atomistic simulations of the D0 to D? charging energies of a gated donor in silicon as a function of applied fields and donor depths and find good agreement with experimental measurements. A self-consistent field large-scale tight-binding method is used to compute the D? binding energies with a domain of over 1.4 million atoms, taking into account the full band structure of the host, applied fields, and interfaces. An applied field pulls the loosely bound D? electron toward the interface and reduces the charging energy significantly below the bulk values. This enables formation of bound excited D? states in these gated donors, in contrast to bulk donors. A detailed quantitative comparison of the charging energies with transport spectroscopy measurements with multiple samples of arsenic donors in ultrascaled metal-oxide-semiconductor transistors validates the model results and provides physical insights. We also report measured D? data showing the presence of bound D? excited states under applied fields.
Nano Letters | 2013
J. Verduijn; G. C. Tettamanzi; S. Rogge
Single donor atoms in semiconductor nanostructures are attractive basic components for quantum device applications. In this work, we demonstrate the ability to manipulate the wave function of a single donor electron with an electric field. The deformation of the wave function is probed by the tunnel current which, furthermore, allows for the determination of the location of the atom in the device. This experiment demonstrates the control necessary for the utilization of single donors in quantum electronics.
Physical Review B | 2010
M. J. Calderon; J. Verduijn; G. P. Lansbergen; G. C. Tettamanzi; S. Rogge; Belita Koiller
Donor states in Si nanodevices can be strongly modified by nearby insulating barriers and metallic gates. Experimental results indicate a strong reduction in the charging energy of isolated As dopants in Si nonplanar field effect transistors relative to the bulk value. By studying the problem of two electrons bound to a shallow donor within the effective mass approach, we find that the measured reduction in the charging energy (measurements also presented here) may be due to a combined effect of the insulator screening and the proximity of metallic gates.
Nanotechnology | 2009
G. C. Tettamanzi; C. I. Pakes; A Potenza; Sergey Rubanov; C. H. Marrows; Steven Prawer
Making use of focused Ga-ion beam (FIB) fabrication technology, the evolution with device dimension of the low-temperature electrical properties of Nb nanowires has been examined in a regime where crossover from Josephson-like to insulating behaviour is evident. Resistance-temperature data for devices with a physical width of order 100 nm demonstrate suppression of superconductivity, leading to dissipative behaviour that is shown to be consistent with the activation of phase-slip below T(c). This study suggests that by exploiting the Ga-impurity poisoning introduced by the FIB into the periphery of the nanowire, a central superconducting phase-slip nanowire with sub-10 nm dimensions may be engineered within the core of the nanowire.
Nano Letters | 2014
Joost van der Heijden; Joe Salfi; Jan A. Mol; J. Verduijn; G. C. Tettamanzi; A. R. Hamilton; Nadine Collaert; S. Rogge
We demonstrate a single-hole transistor using an individual acceptor dopant embedded in a silicon channel. Magneto-transport spectroscopy reveals that the ground state splits as a function of magnetic field into four states, which is unique for a single hole bound to an acceptor in a bulk semiconductor. The two lowest spin states are heavy (|m(j)| = 3/2) and light (|m(j)| = 1/2) hole-like, a two-level system that can be electrically driven and is characterized by a magnetic field dependent and long relaxation time, which are properties of interest for qubits. Although the bulklike spin splitting of a boron atom is preserved in our nanotransistor, the measured Landé g-factors, |g(hh)| = 0.81 ± 0.06 and |g(lh)| = 0.85 ± 0.21 for heavy and light holes respectively, are lower than the bulk value.