G. De Geyter
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. De Geyter.
Astronomy and Astrophysics | 2013
G. De Geyter; M. Baes; J. Fritz; Peter Camps
We present FitSKIRT, a method to efficiently fit radiative transfer models to UV/optical images of dusty galaxies. These images have the advantage that they have better spatial resolution compared to FIR/submm data. FitSKIRT uses the GAlib genetic algorithm library to optimize the output of the SKIRT Monte Carlo radiative transfer code. Genetic algorithms prove to be a valuable tool in handling the multi-dimensional search space as well as the noise induced by the random nature of the Monte Carlo radiative transfer code. FitSKIRT is tested on artificial images of a simulated edge-on spiral galaxy, where we gradually increase the number of fitted parameters. We find that we can recover all model parameters, even if all 11 model parameters are left unconstrained. Finally, we apply the FitSKIRT code to a V-band image of the edge-on spiral galaxy NGC 4013. This galaxy has been modeled previously by other authors using different combinations of radiative transfer codes and optimization methods. Given the different models and techniques and the complexity and degeneracies in the parameter space, we find reasonable agreement between the different models. We conclude that the FitSKIRT method allows comparison between different models and geometries in a quantitative manner and minimizes the need of human intervention and biasing. The high level of automation makes it an ideal tool to use on larger sets of observed data.
Astronomy and Astrophysics | 2013
J. Verstappen; J. Fritz; M. Baes; Matthew William L. Smith; Flor Allaert; S. Bianchi; J. A. D. L. Blommaert; G. De Geyter; I. De Looze; Gianfranco Gentile; Karl D. Gordon; Benne W. Holwerda; S. Viaene; E. M. Xilouris
Context. Edge-on spiral galaxies with prominent dust lanes provide us with an excellent opportunity to study the distribution and properties of the dust within them. The HEROES project was set up to observe a sample of seven large edge-on galaxies across various wavelengths for this investigation. Aims. Within this first paper, we present the Herschel observations and perform a qualitative and quantitative analysis on them, and we derive some global properties of the far infrared and submillimetre emission. Methods. We determine horizontal and vertical profiles from the Herschel observations of the galaxies in the sample and describe the morphology. Modified black-body fits to the global fluxes, measured using aperture photometry, result in dust temperatures and dust masses. The latter values are compared to those that are derived from radiative transfer models taken from the literature. Results. On the whole, our Herschel flux measurements agree well with archival values. We find that the exponential horizontal dust distribution model often used in the literature generally provides a good description of the observed horizontal profiles. Three out of the seven galaxies show signatures of extended vertical emission at 100 and 160 μm at the 5σ level, but in two of these it is probably due to deviations from an exactly edge-on orientation. Only for NGC 4013, a galaxy in which vertically extended dust has already been detected in optical images, we can detect vertically extended dust, and the derived scaleheight agrees with the value estimated through radiative transfer modelling. Our analysis hints at a correlation between the dust scaleheight and its degree of clumpiness, which we infer from the difference between the dust masses as calculated from modelling of optical data and from fitting the spectral energy distribution of Herschel datapoints.
Astronomy and Astrophysics | 2015
S. Viaene; G. De Geyter; M. Baes; J. Fritz; G. J. Bendo; M. Boquien; A. Boselli; S. Bianchi; Luca Cortese; Patrick Cote; Jean-Charles Cuillandre; I. De Looze; S. di Serego Alighieri; Laura Ferrarese; Stephen Gwyn; T. M. Hughes; C. Pappalardo
Context. A segment of the early-type galaxy population hosts a prominent dust lane, often decoupled from its stellar body. Methods of quantifying the dust content of these systems based on optical imaging data usually yield dust masses that are an order of magnitude lower than dust masses derived from the observed far-IR (FIR) emission. The discrepancy is often explained by invoking a diffuse dust component that is hard to trace in the UV or optical. Aims. High-quality optical data from the Next Generation Virgo cluster Survey (NGVS) and FIR/sub-mm observations from the Herschel Virgo Cluster Survey (HeViCS) allow us to revisit previous methods of determining the dust content in galaxies and explore new ones. NGC 4370 is an edge-on, early-type galaxy with a conspicuous dust lane and regular morphology, making it suitable for several (semi-) analytical modelling techniques. We aim to derive the dust mass from both optical and FIR data and to investigate the need to invoke a putative diffuse dust component. Methods. We used different methods to determine the total dust mass in the dust lane. We used our exquisite optical data to create colour and attenuation maps, which are converted to approximate dust mass maps based on simple dust geometries. Dust masses were also derived from SED fits to FIR to sub-mm observations. Finally, inverse radiative transfer fitting was performed to investigate more complex dust geometries, such as an exponential dust disc and a dust ring and to treat the dust-starlight interaction in a self-consistent way. Results. We find that the empirical methods applied to the optical data yield lower limits of 3.4 x 10(5) M-circle dot, an order of magnitude below the total dust masses derived from SED fitting. In contrast, radiative transfer models yield dust masses that are slightly lower, but fully consistent with the FIR-derived mass. We find that the effect of a nuclear stellar disc on the derivation of the total dust mass is minor. Conclusions. Dust is more likely to be distributed in a ring around the centre of NGC 4370 as opposed to an exponential disc or a simple foreground screen. Moreover, by using inverse radiative transfer fitting, we are able to constrain most of the parameters that describe these geometries. The resulting dust masses are high enough to account for the dust observed at FIR/sub-mm wavelengths, so that no diffuse dust component needs to be invoked. We furthermore caution against interpreting dust masses and optical depths based on optical data alone, when using overly simplistic star-dust geometries and the neglect of scattering effects.
Astronomy and Astrophysics | 2015
Gianfranco Gentile; Claude Tydtgat; M. Baes; G. De Geyter; Mina Koleva; G. W. Angus; W. J. G. de Blok; Waad Saftly; S. Viaene
We present the stellar and gaseous kinematics of an Sb galaxy, NGC 3223, with the aim of determining the vertical and radial stellar velocity dispersion as a function of radius, which can help to constrain disk heating theories. Together with the observed NIR photometry, the vertical velocity dispersion is also used to determine the stellar mass-to-light (M/L) ratio, typically one of the largest uncertainties when deriving the dark matter distribution from the observed rotation curve. We find a vertical-to-radial velocity dispersion ratio of σz/σR = 1.21 ± 0.14, significantly higher than expectations from known correlations, and a weakly-constrained Ks-band stellar M/L ratio in the range 0.5-1.7, which is at the high end of (but consistent with) the predictions of stellar population synthesis models. Such a weak constraint on the stellar M/L ratio, however, does not allow us to securely determine the dark matter density distribution. To achieve this, either a statistical approach or additional data (e.g. integral-field unit) are needed. Based on observations collected at the European Southern Observatory, Chile, under proposal 68.B-0588.
Astronomy and Astrophysics | 2015
Flor Allaert; Gianfranco Gentile; M. Baes; G. De Geyter; T. M. Hughes; Fraser Lewis; S. Bianchi; I. De Looze; J. Fritz; Benne W. Holwerda; J. Verstappen; S. Viaene
Context. Edge-on galaxies can offer important insight into galaxy evolution because they are the only systems where the distribution of the different components can be studied both radially and vertically. The HEROES project was designed to investigate the interplay between the gas, dust, stars, and dark matter (DM) in a sample of 7 massive edge-on spiral galaxies. Aims: In this second HEROES paper, we present an analysis of the atomic gas content of 6 out of 7 galaxies in our sample. The remaining galaxy was recently analysed according to the same strategy. The primary aim of this work is to constrain the surface density distribution, the rotation curve, and the geometry of the gas disks in a homogeneous way. In addition we identify peculiar features and signs of recent interactions. Methods: We have constructed detailed tilted-ring models of the atomic gas disks based on new GMRT 21-cm observations of NGC 973 and UGC 4277 and re-reduced archival H i data of NGC 5907, NGC 5529, IC 2531, and NGC 4217. Potential degeneracies between different models were resolved by requiring good agreement with the data in various representations of the data cubes. Results: From our modelling we find that all but one galaxy are warped along the major axis. In addition, we identify warps along the line of sight in three galaxies. A flaring gas layer is required to reproduce the data for only one galaxy, but (moderate) flares cannot be ruled out for the other galaxies either. A coplanar ring-like structure is detected outside the main disk of NGC 4217, which we suggest could be the remnant of a recent minor merger event. We also find evidence of a radial inflow of 15 ± 5 km s-1 in the disk of NGC 5529, which might be related to the ongoing interaction with two nearby companions. For NGC 5907, the extended, asymmetric, and strongly warped outer regions of the H i disk also suggest a recent interaction. In contrast, the inner disks of these three galaxies (NGC 4217, NGC 5529, and NGC 5907) show regular behaviour and seem largely unaffected by the interactions. Our models further support earlier claims of prominent spiral arms in the disks of IC 2531 and NGC 5529. Finally, we detect a dwarf companion galaxy at a projected distance of 36 kpc from the centre of NGC 973. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices are available in electronic form at http://www.aanda.orgThe H i cleaned data cubes as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A18
Developments in soil science | 1990
J. M. Arocena; G. De Geyter; C. Landuydt; Georges Stoops
Abstract Acid ammonium oxalate and dithionite-citrate-bicarbonate were used as extractants for studying the spatial distribution of Fe and Mn in thin section. Materials used were nodules from a terra rossa (44R and 14B); a bog-iron ore (B9) and an Fe-rich clod from a solfataric volcano (P21). Results showed that the red and black bands in sample 44R correspond to Fe and Mn accumulations, respectively. Their distri-bution around an undifferentiated nucleus suggests a polygenetic and reductomorphic origin. The unusually high ratio of oxalate extractable Fe to dithionite-citrate-bicarbonate extractable Fe (>1.0) in B9 is attributed to the presence of vivianite and siderite, both of them being more soluble in NH 4 -oxalate than in DCB. In situ removal of Fe is very useful in “cleaning” the section prior to a detailed investigation of the microstructure.
Monthly Notices of the Royal Astronomical Society | 2017
S. P. C. Peters; G. De Geyter; P. C. van der Kruit; K. C. Freeman
We present optical and near-infrared archival observations of eight edge-on galaxies. These observations are used to model the stellar content of each galaxy using the FITSKIRT software package. Using FITSKIRT, we can self-consistently model a galaxy in each band simultaneously while treating for dust. This allows us to measure accurately both the scalelength and scaleheight of the stellar disc, plus the shape parameters of the bulge. By combining these data with the previously reported integrated magnitudes of each galaxy, we can infer their true luminosities. We have successfully modelled seven out of the eight galaxies in our sample. We find that stellar discs can be modelled correctly, but we have not been able to model the stellar bulge reliably. Our sample consists for the most part of slowly rotating galaxies and we find that the average dust layer is much thicker than is reported for faster rotating galaxies.
Developments in soil science | 1993
J. M. Arocena; C. Landuydt; G. De Geyter; Georges Stoops
Abstract Arocena, J.M., Landuydt, C., De Geyter, G. and Stoops, G., 1994. Iron-rich peds near a volcanic mudpool, Mt. Makiling (Philippines). In: A.J. Ringrose-Voase and G.S. Humphreys (Editors), Soil Micromorphology: Studies in management and Genesis. Proc. IX Int. Working Meeting on Soil Micromorphology, Townsville, Australia, July 1992. Developments in Soil Science 22, Elsevier, Amsterdam, pp. 99–105.
Astronomy and Astrophysics | 2015
Waad Saftly; M. Baes; G. De Geyter; Peter Camps; Florent Renaud; J. Guedes; I. De Looze
Pedologie XXXIX | 1989
J. M. Arocena; G. De Geyter; C. Landuydt; U. Schwertmann