Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Dean Price is active.

Publication


Featured researches published by G. Dean Price.


Journal of Experimental Botany | 2011

Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency

Martin A. J. Parry; Matthew P. Reynolds; Michael E. Salvucci; Christine A. Raines; P. John Andralojc; Xin-Guang Zhu; G. Dean Price; Anthony G. Condon; Robert T. Furbank

Past increases in yield potential of wheat have largely resulted from improvements in harvest index rather than increased biomass. Further large increases in harvest index are unlikely, but an opportunity exists for increasing productive biomass and harvestable grain. Photosynthetic capacity and efficiency are bottlenecks to raising productivity and there is strong evidence that increasing photosynthesis will increase crop yields provided that other constraints do not become limiting. Even small increases in the rate of net photosynthesis can translate into large increases in biomass and hence yield, since carbon assimilation is integrated over the entire growing season and crop canopy. This review discusses the strategies to increase photosynthesis that are being proposed by the wheat yield consortium in order to increase wheat yields. These include: selection for photosynthetic capacity and efficiency, increasing ear photosynthesis, optimizing canopy photosynthesis, introducing chloroplast CO(2) pumps, increasing RuBP regeneration, improving the thermal stability of Rubisco activase, and replacing wheat Rubisco with that from other species with different kinetic properties.


Functional Plant Biology | 2002

Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria

Murray R. Badger; David T. Hanson; G. Dean Price

Cyanobacteria have developed an effective photosynthetic CO2 concentrating mechanism (CCM) for improving the efficiency of carboxylation by a relatively inefficient Rubisco. The development of this CCM was presumably in response to the decline in atmospheric CO2 levels and rising O2, both of which were triggered by the development of oxygenic photosynthesis by cyanobacteria themselves. In the past few years there has been a rapid expansion in our understanding of the mechanism and genes responsible for the CCM. In addition, there has been a recent expansion in the availability of complete cyanobacterial genomes, thus increasing our potential to examine questions regarding both the evolution and diversity of components of the CCM across cyanobacteria. This paper considers various CCM and photosynthesis gene components across eight cyanobacteria where significant genomic information is available. Significant conclusions from our analysis of the distribution of various genes indicated the following. Firstly, cyanobacteria have developed with two types of carboxysomes, and this is correlated with the form of Rubisco present. We have coined the terms α-cyanobacteria to refer to cyanobacteria containing Form 1A Rubisco and α-carboxysomes, and β-cyanobacteria having Form 1B Rubisco and β-carboxysomes. Secondly, there are two NDH-1 CO2 uptake systems distributed variably, withProchlorococcus marinus species appearing to lack this CO2 uptake system. There are at least two HCO3- transport systems distributed variably, with some α-cyanobacteria having an absence of systems identified in β-cyanobacteria. Finally, there are multiple forms of carbonic anhydrases (CAs), but with only β-carboxysomal CA having a clearly shown role at present. The α-cyanobacteria appear to lack a clearly identifiable carboxysomal CA. A pathway for the evolution of cyanobacterial CCMs is proposed. The acquisition of carboxysomes triggered by the rapid decline of atmospheric CO2 in the Phanerozoic is argued to be the initial step. This would then be followed by the development of NDH-1 CO2-uptake systems, followed by the development of low-and high-affinity HCO3- transporters. An intriguing question is, were carboxysomes developed first in cyanobacteria, or did they originate by the lateral transfer of pre-existing proteobacterial bacterial microcompartment genes? The potentially late evolution of the CCM genes in cyanobacteria argues for a polyphyletic and separate evolution of CCMs in cyanobacteria, algae, and higher plants.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Identification of a SulP-type bicarbonate transporter in marine cyanobacteria

G. Dean Price; Fiona J. Woodger; Murray R. Badger; Susan M. Howitt; Loraine Tucker

Cyanobacteria possess a highly effective CO2-concentrating mechanism that elevates CO2 concentrations around the primary carboxylase, Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase). This CO2-concentrating mechanism incorporates light-dependent, active uptake systems for CO2 and HCO–3. Through mutant studies in a coastal marine cyanobacterium, Synechococcus sp. strain PCC7002, we identified bicA as a gene that encodes a class of HCO–3 transporter with relatively low transport affinity, but high flux rate. BicA is widely represented in genomes of oceanic cyanobacteria and belongs to a large family of eukaryotic and prokaryotic transporters presently annotated as sulfate transporters or permeases in many bacteria (SulP family). Further gain-of-function experiments in the freshwater cyanobacterium Synechococcus PCC7942 revealed that bicA expression alone is sufficient to confer a Na+-dependent, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{HCO}}_{3}^{-}\end{equation*}\end{document} uptake activity. We identified and characterized three cyanobacterial BicA transporters in this manner, including one from the ecologically important oceanic strain, Synechococcus WH8102. This study presents functional data concerning prokaryotic members of the SulP transporter family and represents a previously uncharacterized transport function for the family. The discovery of BicA has significant implications for understanding the important contribution of oceanic strains of cyanobacteria to global CO2 sequestration processes.


Planta | 1994

Specific reduction of chloroplast carbonic anhydrase activity by antisense RNA in transgenic tobacco plants has a minor effect on photosynthetic CO2 assimilation

G. Dean Price; Susanne von Caemmerer; John R. Evans; Jian-Wei Yu; J. Lloyd; Vella Oja; Prue Kell; Karin Harrison; Anne Gallagher; Murrray R. Badger

As an approach to understanding the physiological role of chloroplast carbonic anhydrase (CA), this study reports on the production and preliminary physiological characterisation of transgenic tobacco (Nicotiana tabacum L.) plants where chloroplast CA levels have been specifically suppressed with an antisense construct directed against chloroplast CA mRNA. Primary transformants with CA levels as low as 2% of wild-type levels were recovered, together with intermediate plants with CA activities of about 20–50% of wild-type levels. Plants with even the lowest CA levels were not morphologically distinct from the wild-type plants. Segregation analysis of the low-CA character in plants grown from T1 selfed seed indicated that at least one of the low-CA plants appears to have two active inserts and that at least two of the intermediate-CA plants have one active insert. Analysis of CO2 gas exchange of a group of low-CA plants with around 2% levels of CA indicated that this large reduction in chloroplastic CA did not appear to cause a measurable alteration in net CO2 fixation at 350 μbar CO2 and an irradiance of 1000 μmol quanta·m−2·s−1. In addition, no significant differences in Rubisco activity, chlorophyll content, dry weight per unit leaf area, stomatal conductance or the ratio of intercellular to ambient CO2 partial pressure could be detected. However, the carbon isotope compositions of leaf dry matter were significantly lower (0.85%o) for low-CA plants than for wildtype plants. This corresponds to a 15-μbar reduction in the CO2 partial pressure at the sites of carboxylation. The difference, which was confirmed by concurrent measurement of discrimination with gas exchange, would reduce the CO2 assimilation rate by 4.4%, a difference that could not be readily determined by gas-exchange techniques given the inherent variability found in tobacco. A 98% reduction in CA activity dramatically reduced the 18O discrimination in CO2 passing over the leaf, consistent with a marked reduction in the ratio of hydrations to carboxylations. We conclude that a reduction in chloroplastic CA activity of two orders of magnitude does not produce a major limitation on photosynthesis at atmospheric CO2 levels, but that normal activities of the enzyme appear to play a role in facilitated transfer of CO2 within the chloroplast, producing a marginal improvement in the efficiency of photosynthesis in C3 plants.


Bioresource Technology | 2011

Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation

Gabriel O. James; Charles H. Hocart; Warwick Hillier; Hancai Chen; Farzaneh Kordbacheh; G. Dean Price; Michael A. Djordjevic

The Chlamydomonas reinhardtii starch-less mutant, BAF-J5, was found to store lipids up to 65% of dry cell weight when grown photoheterotrophically and subjected to nitrogen starvation. Fourier transform infrared spectroscopy was used as a high-throughput method for semi-quantitative measurements of protein, carbohydrate and lipid content. The fatty acids of wild-type and starch mutants were identified and quantified by gas chromatography mass spectrometry. C. reinhardtii starch mutants, BAF-J5 and I7, produce significantly elevated levels of 16:0, 18:1(Δ9), 18:2(Δ9,12) and 18:3(Δ9,12,15) fatty acids. Long-chain saturated, mono- and polyunsaturated fatty acids were found under nitrogen starvation. Oleosin-like and caleosin-like genes were identified in the C. reinhardtii genome. However, proteomic analysis of isolated lipid bodies only identified a key lipid droplet associated protein. This study shows it is possible to manipulate algal biosynthetic pathways to produce high levels of lipid that may be suitable for conversion to liquid fuels.


FEBS Letters | 1988

A dicarboxylate transporter on the peribacteroid membrane of soybean nodules

Michael K. Udvardi; G. Dean Price; Peter M. Gresshoff; David A. Day

Using preparations of peribacteroid membrane (PBM)‐enclosed bacteroids from soybean root nodules, we show here that the PBM possesses a dicarboxylate transporter capable of mediating a rapid flux of dicarboxylate anions, such as malate and succinate, to the bacteroids inside the nodule. The transporter has a higher affinity for the monovalent malate anion than for the succinate anion (K m = 2 and 15 μM, respectively) although the V max for malate− appears to be lower than for succinate− (V max = 11 and 30 nmol·min−1·mg protein−1, respectively).


Journal of Biological Chemistry | 2007

Analysis of carboxysomes from Synechococcus PCC7942 reveals multiple Rubisco complexes with carboxysomal proteins CcmM and CcaA.

Benedict M. Long; Murray R. Badger; Spencer M. Whitney; G. Dean Price

In cyanobacteria, the key enzyme for photosynthetic CO2 fixation, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is bound within proteinaceous polyhedral microcompartments called carboxysomes. Cyanobacteria with Form IB Rubisco produce β-carboxysomes whose putative shell proteins are encoded by the ccm-type genes. To date, very little is known of the protein-protein interactions that form the basis of β-carboxysome structure. In an effort to identify such interactions within the carboxysomes of the β-cyanobacterium Synechococcus sp. PCC7942, we have used polyhistidine-tagging approaches to identify at least three carboxysomal subcomplexes that contain active Rubisco. In addition to the expected L8S8 Rubisco, which is the major component of carboxysomes, we have identified two Rubisco complexes containing the putative shell protein CcmM, one of which also contains the carboxysomal carbonic anhydrase, CcaA. The complex containing CcaA consists of Rubisco and the full-length 58-kDa form of CcmM (M58), whereas the other is made up of Rubisco and a short 35-kDa form of CcmM (M35), which is probably translated independently of M58 via an internal ribosomal entry site within the ccmM gene. We also show that the high CO2-requiring ccmM deletion mutant (ΔccmM) can achieve nearly normal growth rates at ambient CO2 after complementation with both wild type and chimeric (His6-tagged) forms of CcmM. Although a significant amount of independent L8S8 Rubisco is confined to the center of the carboxysome, we speculate that the CcmM-CcaA-Rubisco complex forms an important assembly coordination within the carboxysome shell. A speculative carboxysome structural model is presented.


Functional Plant Biology | 2002

Modes of active inorganic carbon uptake in the cyanobacterium, Synechococcus sp. PCC7942

G. Dean Price; Shin-ichi Maeda; Tatsuo Omata; Murray R. Badger

Cyanobacteria (blue-green algae) have evolved a remarkable environmental adaptation for survival at limiting CO2 concentrations. The adaptation is known as a CO2 concentrating mechanism, and functions to actively transport and accumulate inorganic carbon (Ci; HCO3- and CO2) within the cell. Thereafter, this Ci pool is utilised to provide elevated CO2 concentrations around the primary CO2 fixing enzyme, Rubisco, which is encapsulated in a unique micro-compartment known as the carboxysome. Recently, significant progress has been gained in understanding the different types of Ci transport in cyanobacteria. This semi-review centres on the model cyanobacterium, Synechococcus sp. PCC7942, which possesses at least four distinct modes of Ci uptake when grown under Ci limitation, each possessing a high degree of functional redundancy. The four modes so far identified are: (i) BCT1, an inducible, high affinity HCO3- transporter of the bacterial ATP binding cassette transporter family, encoded by cmpABCD; (ii) a constitutive, Na+-dependent HCO3- transport system that can be allosterically activated (possibly by phosphorylation) in as little as 10 min; (iii) and (iv) two CO2 uptake systems, one constitutive and the other inducible, based on specialised forms of thylakoid-based, type 1, NAD(P)H dehydrogenase complexes (NDH-1). Here, we forward a speculative model that proposes that two unique proteins, ChpX and ChpY, possess CO2 hydration activity in the light, and when coupled to photosynthetic electron transport through the two specialised NDH-1 complexes, result in net hydration of CO2 to HCO3- as a crucial component of the CO2 uptake process.


Planta | 1995

Specific reduction of chloroplast glyceraldehyde-3-phosphate dehydrogenase activity by antisense RNA reduces CO2 assimilation via a reduction in ribulose bisphosphate regeneration in transgenic tobacco plants

G. Dean Price; John R. Evans; Susanne von Caemmerer; Jian-Wei Yu; Murray R. Badger

The reduction of 3-phosphoglycerate (PGA) to triose phosphate is a key step in photosynthesis linking the photochemical events of the thylakoid membranes with the carbon metabolism of the photosynthetic carbon-reduction (PCR) cycle in the stroma. Glyceraldehyde-3-phosphate dehydrogenase: NADP oxidoreductase (GAPDH) is one of the two chloroplast enzymes which catalyse this reversible conversion. We report on the engineering of an antisense RNA construct directed against the tobacco (Nicotiana tabacum L.) chloroplastlocated GAPDH (A subunit). The construct was integrated into the tobacco genome by Agrobacterium-mediated transformation of leaf discs. Of the resulting transformants, five plants were recovered with reduced GAPDH activities ranging from 11 to 24% of wild-type (WT) activities. Segregation analysis of the kanamycin-resistance character in self-pollinated T1 seed from each of the five transformants revealed that one plant (GAP-R) had two active DNA inserts and the others had one insert. T1 progeny from GAP-R was used to generate plants with GAPDH activities ranging from WT levels to around 7% of WT levels. These were used to study the effect of variable GAPDH activities on metabolite pools for ribulose1,5-bisphosphate (RuBP) and PGA, and the accompanying effects on the rate of CO2 assimilation and other gasexchange parameters. The RuBP pool size was linearly related to GAPDH activity once GAPDH activity dropped below the range for WT plants, but the rate of CO2 assimilation was not affected until RuBP levels dropped to 30–40% of WT levels. That is, the CO2 assimilation rate fell when RuBP per ribulose-1,5-biphosphate carboxylase-oxygenase (Rubisco) site fell below 2 mol·(mol site)−1 while the ratio for WT plants was 4–5 mol·m(mol site)−1. Leaf conductance was not reduced in leaves with reduced GAPDH activities, resulting in an increase in the ratio of intercellular to ambient CO2 partial pressure. Conductance in plants with reduced GAPDH activities was still sensitive to CO2 and showed a normal decline with increases in CO2 partial pressure. Although PGA levels did not fluctuate greatly, the effect of reduced GAPDH activity on RuBP-pool size and assimilation rate can be interpreted as being due to a blockage in the regeneration of RuBP. Concomitant gas-ex change and chlorophyll a fluorescence measurements indicated that photosynthesis changed from being Rubisco-limited to being RuBP-regeneration-limited at a lower CO2 partial pressure in the antisense plants than in WT plants. Photosynthetic electron transport was down-regulated by the build-up of a large proton gradient and the electron-transport chain did not become over-reduced due to a shortage of NADP. Plants with severely reduced GAPDH activity were not photoinhibited despite the continuous presence of a large thylakoid proton gradient in the light. Along with plant size, Rubisco activity, leaf soluble protein and chlorophyll content were reduced in plants with the lowest GAPDH activities. We conclude that chloroplastic GAPDH activity does not appear to limit steady-state photosynthetic CO2 assimilation at ambient CO2. This is because WT leaves maintain the ratio of RuBP per Rubisco site about twofold higher than the level required to achieve a maximal rate of CO2 assimilation.


Plant Physiology | 2003

Inorganic Carbon Limitation and Light Control the Expression of Transcripts Related to the CO2-Concentrating Mechanism in the Cyanobacterium Synechocystis sp. Strain PCC6803

Patrick J. McGinn; G. Dean Price; Ryszard Maleszka; Murray R. Badger

The cyanobacterium Synechocystis sp. strain PCC6803 possesses three modes of inorganic carbon (Ci) uptake that are inducible under Ci stress and that dramatically enhance the efficiency of the CO2-concentrating mechanism (CCM). The effects of Ci limitation on the mRNA transcript abundance of these inducible uptake systems and on the physiological expression of the CCM were investigated in detail in this cyanobacterium. Transcript abundance was assessed with semiquantitative and real-time reverse transcriptase-polymerase chain reaction techniques. Cells aerated with CO2-free air for 30 min in the light, but not in the dark, depleted the total [Ci] to near zero levels. Under these conditions, the full physiological expression of the CCM was apparent within 2 h. Transcripts for the three inducible Ci uptake systems,ndhF3, sbtA, and cmpA, showed near-maximal abundance at 15 min under Ci limitation. The transcriptional regulators, cmpR andndhR, were more moderately expressed, whereas therbcLXS and ccmK-N operons andndhF4/ndhD4/chpX and ccaAgenes were insensitive to the low-Ci treatment. The combined requirement of low Ci and light for the expression of several CCM-related transcripts was examined using real-time reverse transcriptase-polymerase chain reaction. CmpA,ndhF3, and sbtA were strongly expressed in the light, but not in the dark, under low-Ci conditions. We could find no evidence for induction of these or other CCM-related genes by a high-light treatment under high-CO2 conditions. This provided evidence that high-light stress alone could not trigger the expression of CCM-related transcripts in Synechocystissp. PCC6803. Potential signals triggering induction of the high-affinity state of the CCM are discussed.

Collaboration


Dive into the G. Dean Price's collaboration.

Top Co-Authors

Avatar

Murray R. Badger

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Susanne von Caemmerer

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Benedict M. Long

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Dieter Sültemeyer

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Fiona J. Woodger

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Rae

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Britta Förster

Australian National University

View shared research outputs
Top Co-Authors

Avatar

John R. Evans

Australian National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge