Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Di Baldassarre is active.

Publication


Featured researches published by G. Di Baldassarre.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2013

Panta Rhei-Everything Flows: Change in hydrology and society-The IAHS Scientific Decade 2013-2022

Alberto Montanari; G. Young; Hubert H. G. Savenije; Denis A. Hughes; Thorsten Wagener; L. Ren; Demetris Koutsoyiannis; Christophe Cudennec; Elena Toth; Salvatore Grimaldi; Günter Blöschl; Murugesu Sivapalan; Keith Beven; Hoshin V. Gupta; Matthew R. Hipsey; Bettina Schaefli; Berit Arheimer; Eva Boegh; Stanislaus J. Schymanski; G. Di Baldassarre; Bofu Yu; Pierre Hubert; Y. Huang; Andreas Schumann; D.A. Post; V. Srinivasan; Ciaran J. Harman; Sally E. Thompson; M. Rogger; Alberto Viglione

Abstract The new Scientific Decade 2013–2022 of IAHS, entitled “Panta Rhei—Everything Flows”, is dedicated to research activities on change in hydrology and society. The purpose of Panta Rhei is to reach an improved interpretation of the processes governing the water cycle by focusing on their changing dynamics in connection with rapidly changing human systems. The practical aim is to improve our capability to make predictions of water resources dynamics to support sustainable societal development in a changing environment. The concept implies a focus on hydrological systems as a changing interface between environment and society, whose dynamics are essential to determine water security, human safety and development, and to set priorities for environmental management. The Scientific Decade 2013–2022 will devise innovative theoretical blueprints for the representation of processes including change and will focus on advanced monitoring and data analysis techniques. Interdisciplinarity will be sought by increased efforts to connect with the socio-economic sciences and geosciences in general. This paper presents a summary of the Science Plan of Panta Rhei, its targets, research questions and expected outcomes. Editor Z.W. Kundzewicz Citation Montanari, A., Young, G., Savenije, H.H.G., Hughes, D., Wagener, T., Ren, L.L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S.J., Di Baldassarre, G., Yu, B., Hubert, P., Huang, Y., Schumann, A., Post, D., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., and Belyaev, V., 2013. “Panta Rhei—Everything Flows”: Change in hydrology and society—The IAHS Scientific Decade 2013–2022. Hydrological Sciences Journal. 58 (6) 1256–1275.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2009

Analysis of the effects of levee heightening on flood propagation: example of the River Po, Italy

G. Di Baldassarre; Attilio Castellarin; Armando Brath

Abstract The effects of human activities on flood propagation, during the period 1878–2005, in a 190-km reach of the middle—lower portion of the River Po (Northern Italy) are investigated. A series of topographical, hydrological and inundation data were collected for the 1878 River Po geometry and the June 1879 flood event, characterised by an inundated area of 432 km2. The aim of the study is two-fold: (1) to show the applicability of flood inundation models in reconstructing historical inundation events, and (2) to assess the effects of human activities during the last century on flood propagation in the middle—lower portion of the River Po. Numerical simulations were performed by coupling a two-dimensional finite element code, TELEMAC-2D, with a one-dimensional finite difference code, HEC-RAS.


Water Resources Research | 2016

An intercomparison of remote sensing river discharge estimation algorithms from measurements of river height, width, and slope

Michael Durand; Colin J. Gleason; Pierre-André Garambois; David M. Bjerklie; Laurence C. Smith; Hélène Roux; Ernesto Rodriguez; Paul D. Bates; Tamlin M. Pavelsky; Jérôme Monnier; X. Chen; G. Di Baldassarre; J.-M. Fiset; Nicolas Flipo; Renato Prata de Moraes Frasson; J. Fulton; N. Goutal; Faisal Hossain; E. Humphries; J. T. Minear; Micah Mukolwe; Jeffrey C. Neal; Sophie Ricci; Brett F. Sanders; Gj-P Schumann; Jochen E. Schubert; Lauriane Vilmin

The Surface Water and Ocean Topography (SWOT) satellite mission planned for launch in 2020 will map river elevations and inundated area globally for rivers >100 m wide. In advance of this launch, we here evaluated the possibility of estimating discharge in ungauged rivers using synthetic, daily ‘‘remote sensing’’ measurements derived from hydraulic models corrupted with minimal observational errors. Five discharge algorithms were evaluated, as well as the median of the five, for 19 rivers spanning a range of hydraulic and geomorphic conditions. Reliance upon a priori information, and thus applicability to truly ungauged reaches, varied among algorithms: one algorithm employed only global limits on velocity and depth, while the other algorithms relied on globally available prior estimates of discharge. We found at least one algorithm able to estimate instantaneous discharge to within 35% relative root-mean-squared error (RRMSE) on 14/16 nonbraided rivers despite out-of-bank flows, multichannel planforms, and backwater effects. Moreover, we found RRMSE was often dominated by bias; the median standard deviation of relative residuals across the 16 nonbraided rivers was only 12.5%. SWOT discharge algorithm progress is therefore encouraging, yet future efforts should consider incorporating ancillary data or multialgorithm synergy to improve results.


Water Resources Research | 2016

Probabilistic Flood Maps to support decision‐making: Mapping the Value of Information

Leonardo Alfonso; Micah Mukolwe; G. Di Baldassarre

Floods are one of the most frequent and disruptive natural hazards that affect man. Annually, significant flood damage is documented worldwide. Flood mapping is a common preimpact flood hazard miti ...


Natural Hazards | 2015

The failed-levee effect: Do societies learn from flood disasters?

R. A. Collenteur; H. de Moel; Brenden Jongman; G. Di Baldassarre

Human societies have learnt to cope with flood risks in several ways, the most prominent ways being engineering solutions and adaptive measures. However, from a more sustainable point of view, it can be argued that societies should avoid or at least minimize urban developments in floodplain areas. While many scientists have studied the impact of human activities on flood risk, only a few studies have investigated the opposite relationships, i.e. the impacts of past flood events on floodplain development. In this study, we make an initial attempt to understand the impact of the occurrence of flood disasters on the spatial distribution of population dynamics in floodplain areas. Two different methodologies are used to uncover this relationship, a large-scale study for the USA and a case-study analysis of the 1993 Mississippi flood. The large-scale analysis is performed at county level scale for the whole of the USA and indicates a positive relationship between property damage due to flood events and population growth. The case-study analysis examines a reach of the Mississippi river and the territory, which was affected by flooding in 1993. Contrary to the large-scale analysis, no significant relationship is found in this detailed study. However, a trend of dampened population growth right after the flood followed by an accelerated growth a decade later could be identified in the raw data and linked to explanations found in the literature.


Water Resources Research | 2017

Impact of social preparedness on flood early warning systems

M. Girons Lopez; G. Di Baldassarre; Jan Seibert

Flood early warning systems play a major role in the disaster risk reduction paradigm as cost-effective methods to mitigate flood disaster damage. The connections and feedbacks between the hydrological and social spheres of early warning systems are increasingly being considered as key aspects for successful flood mitigation. The behavior of the public and first responders during flood situations, determined by their preparedness, is heavily influenced by many behavioral traits such as perceived benefits, risk awareness, or even denial. In this study, we use the recency of flood experiences as a proxy for social preparedness to assess its impact on the efficiency of flood early warning systems through a simple stylized model and implemented this model using a simple mathematical description. The main findings, which are based on synthetic data, point to the importance of social preparedness for flood loss mitigation, especially in circumstances where the technical forecasting and warning capabilities are limited. Furthermore, we found that efforts to promote and preserve social preparedness may help to reduce disaster-induced losses by almost one half. The findings provide important insights into the role of social preparedness that may help guide decision-making in the field of flood early warning systems.


NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics | 2012

An Entropy Method for Floodplain Monitoring Network Design

Elena Ridolfi; Kun Yan; Leonardo Alfonso; G. Di Baldassarre; Francesco Napolitano; Fabio Russo; Paul D. Bates

In recent years an increasing number of flood-related fatalities has highlighted the necessity of improving flood risk management to reduce human and economic losses. In this framework, monitoring of flood-prone areas is a key factor for building a resilient environment. In this paper a method for designing a floodplain monitoring network is presented. A redundant network of cheap wireless sensors (GridStix) measuring water depth is considered over a reach of the River Dee (UK), with sensors placed both in the channel and in the floodplain. Through a Three Objective Optimization Problem (TOOP) the best layouts of sensors are evaluated, minimizing their redundancy, maximizing their joint information content and maximizing the accuracy of the observations. A simple raster-based inundation model (LISFLOOD-FP) is used to generate a synthetic GridStix data set of water stages. The Digital Elevation Model (DEM) that is used for hydraulic model building is the globally and freely available SRTM DEM.


International Conference on Numerical Analysis and Applied Mathematics (ICNAAM), SEP 23-29, 2015, Rhodes, GREECE | 2016

Optimal cross-sectional sampling for river modelling with bridges: An information theory-based method

Elena Ridolfi; Leonardo Alfonso; G. Di Baldassarre; Francesco Napolitano

The description of river topography has a crucial role in accurate one-dimensional (1D) hydraulic modelling. Specifically, cross-sectional data define the riverbed elevation, the flood-prone area, and thus, the hydraulic behavior of the river. Here, the problem of the optimal cross-sectional spacing is solved through an information theory-based concept. The optimal subset of locations is the one with the maximum information content and the minimum amount of redundancy. The original contribution is the introduction of a methodology to sample river cross sections in the presence of bridges. The approach is tested on the Grosseto River (IT) and is compared to existing guidelines. The results show that the information theory-based approach can support traditional methods to estimate rivers’ cross-sectional spacing.


Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2017

Simple vs complex rating curves: accounting for measurement uncertainty, slope ratio and sample size

M. Sörengård; G. Di Baldassarre

ABSTRACT Multiple segmented rating curves have been proposed to better capture the variability of the physical and hydraulic characteristics of river–floodplain systems. We evaluate the accuracy of one- and two-segmented rating curves by exploiting a large and unique database of direct measurements of stage and discharge data in more than 200 Swedish catchments. Such a comparison is made by explicitly accounting for the potential impact of measurement uncertainty. This study shows that two-segmented rating curves did not fit the data significantly better, nor did they generate fewer errors than one-segmented rating curves. Two-segmented rating curves were found to be slightly beneficial for low flow when there were strong indications of segmentation, but predicted the rating relationship worse in cases of weak indication of segmentation. Other factors were found to have a larger impact on rating curve errors, such as the uncertainty of the discharge measurements and the type of regression method.


Hydrology and Earth System Sciences | 2009

Uncertainty in river discharge observations: a quantitative analysis

G. Di Baldassarre; Alberto Montanari

Collaboration


Dive into the G. Di Baldassarre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonardo Alfonso

UNESCO-IHE Institute for Water Education

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Brath

University of Bologna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Micah Mukolwe

UNESCO-IHE Institute for Water Education

View shared research outputs
Top Co-Authors

Avatar

Günter Blöschl

Vienna University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge