Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. I. Ustroev is active.

Publication


Featured researches published by G. I. Ustroev.


Plasma Physics Reports | 2006

Experiments on the implosion of heterogeneous wire arrays on the S-300 facility

Yu. G. Kalinin; A. S. Kingsep; V. P. Smirnov; Yu. L. Bakshaev; A. Bartov; P. I. Blinov; S. A. Dan’ko; Leonid G. Dubas; A. V. Korel’skiĭ; V. D. Korolev; V. I. Mizhiritskiĭ; G. I. Ustroev; A. S. Chernenko; R.V. Chikin; A. Yu. Shashkov; Li Zheng-Hong; Hua Xinsheng; Peng Xianjue; Feng Shupin; Guo Cun; Jiang Shi-Lun; Ning Cheng; Song Feng-Jun; Xu Rong-Kun; Xu Ze-Ping; Yan Chengli; Yang Jian-Lun

Results are presented from experiments on the implosion of simple and nested wire arrays of different mass and material composition (W and/or Al). The experiments were performed on the S-300 facility (a high-current pulsed power generator with a voltage pulse amplitude of 700 kV, current amplitude of 2.5–3.5 MA, and pulse duration of 100 ns) at the Kurchatov Institute (Moscow). The imploding arrays were recorded using five-frame laser shadowgraphy, three-frame image-tube photography, an optical streak camera, X-ray pinhole cameras with different filters, X-ray polychromator, and X-ray spectrometer on the basis of a convex mica crystal. Laser probing measurements indicate that the current-carrying structure undergoes a fast (over a time shorter than 10 ns) global rearrangement, which manifests itself as the emergence of transparent regions. This effect is presumably related to the grouping of the wires, which carry currents of a few tens of kiloamperes, or to the current filamentation in their common plasma corona. The radiation of liners of different chemical composition in the final compressed state has been investigated. Electric measurements performed in experiments with nested arrays (e.g., with an aluminum outer liner and a tungsten inner liner) indicate that the inner array, which is still at rest, intercepts the electric current from the outer array when the latter penetrates through it. The effect of the “fall” of the outer liner through the inner one in the course of magnetic implosion has been revealed for the first time by analyzing X-ray emission spectra.


Plasma Physics and Controlled Fusion | 2010

Efficient production of 100?keV deuterons in deuterium gas puff Z-pinches at 2?MA current

D. Klir; J. Kravarik; P. Kubes; K. Rezac; J. Cikhardt; E Litseva; T Hyhlik; S. Anan'ev; Yu. L. Bakshaev; V. A. Bryzgunov; A. S. Chernenko; Yu. G. Kalinin; E. D. Kazakov; V. D. Korolev; G. I. Ustroev; A. A. Zelenin; L. Juha; J. Krása; A. Velyhan; L Vysin; J Sonsky; I. V. Volobuev

Deuterium gas puff experiments were carried out on the S-300 Z-pinch at the Kurchatov Institute in Moscow. Gas puffs imploded onto the axis before a current peak at about 100 ns. Fusion neutrons were generated after the gas puff implosion during global expansion of a plasma column. Neutron emission lasted on average 35 ± 5 ns (full width half maximum, FWHM). In the downstream direction (on the Z-pinch axis behind the cathode), a mean neutron energy was 2.6 ± 0.1 MeV. Side-on neutron energy spectra peaked at 2.40 ± 0.05 MeV with about 600 ± 150 keV FWHM. A broad width of side-on neutron spectra implied a high radial component of deuteron velocities. An average kinetic energy of fast deuterons, which produced fusion neutrons, was 150 keV. A peak neutron yield reached a value of 6 × 1010 on a current level of 1.5 MA. It was by one order higher in comparison with other deuterated loads used on the same current generator. On the basis of experimental observations, we concluded that a total energy of deuterons accelerated to fusion energies was above 1.5 kJ. It is more than 15% of the energy input into a plasma. Therefore gas puff Z-pinches seem to be not only powerful sources of x-ray radiation but also efficient sources of 100 keV deuterons. Such a result is consistent with high neutron yields observed on the Angara Z-pinch and plasma foci with similar currents.


Physics of Plasmas | 2008

Neutron emission generated during wire array Z-pinch implosion onto deuterated fiber

D. Klir; J. Kravarik; P. Kubes; K. Rezac; S. S. Anan’ev; Yu. L. Bakshaev; P. I. Blinov; A. S. Chernenko; E. D. Kazakov; V. D. Korolev; B. R. Meshcherov; G. I. Ustroev; L. Juha; J. Krása; A. Velyhan

The implosion of both cylindrical and conical wire arrays onto a deuterated polyethylene fiber was studied on the S-300 pulsed power generator [A. S. Chernenko et al., Proceedings of the 11th International Conference on High Power Particle Beams (Academy of Science of Czech Republic, Prague, 1996), p. 154]. Neutron measurements were used to obtain information about acceleration of fast deuterons. An average neutron yield approached 109 on the current level of 2MA. In the case of conical wire arrays, side-on neutron energy spectra peaked at 2.48±0.05MeV with 450±100keV full width at half-maximum. In the downstream direction, the peak neutron energy and the width of a neutron spectrum were 2.65±0.10MeV and 350±100keV, respectively. The total number of fast deuterons was 1015 and their average kinetic energy was about 150keV. Most of the deuterons were directed toward the cathode. The broad width of neutron spectra in the side-on direction implied a high radial component of deuteron velocity. With regard to ...


Jetp Letters | 2008

Investigations of the Mega-Ampere Multiwire X Pinch

S. S. Anan’ev; Yu. L. Bakshaev; P. I. Blinov; V. A. Bryzgunov; S. A. Dan’ko; A. I. Zhuzhunashvili; A. A. Zelenin; E. D. Kazakov; Yu. G. Kalinin; A. S. Kingsep; V. D. Korolev; V. I. Mizhiritskiĭ; Sergey A. Pikuz; Vera M. Romanova; V. P. Smirnov; S. I. Tkachenko; G. I. Ustroev; A. S. Chernenko; T. A. Shelkovenko; V. A. Shchagin

The results of experimental investigations into the dynamics of a plasma produced in the multiwire X pinch at currents up to 2.3 MA are presented. The materials, diameters, and the number of wires are varied. At such currents, the power of the soft x-ray radiation with the photon energy from 1 to 2 keV increases to 120 GW, and, since the size of a hot spot is less than 20 μm, it corresponds to a source brightness of ∼1015 W/(cm2 sr). The energy recorded in lines of neon-like molybdenum (in the range of 2.5–3 keV) is higher than 10 J. Hard x-ray radiation detected in experiments with tungsten and molybdenum X pinches has the photon energy ≥800 keV.


Plasma Physics Reports | 2014

Generation and anisotropy of neutron emission from a condensed Z-pinch

Yu. L. Bakshaev; V. A. Bryzgunov; V. V. Vikhrev; I. V. Volobuev; S. A. Dan’ko; E. D. Kazakov; V. D. Korolev; D. Klir; A. D. Mironenko-Marenkov; V. G. Pimenov; E. A. Smirnova; G. I. Ustroev

The paper presents results of measurements of neutron emission generated in the constriction of a fast Z-pinch at the S-300 facility (2 MA, 100 ns). An increased energy concentration was achieved by using a combined load the central part of which was a microporous deuterated polyethylene neck with a mass density of 100 mg/cm3 and diameter of 1–1.5 mm. The neck was placed between two 5-mm-diameter agar-agar cylinders. The characteristics of neutron emission in two axial and two radial directions were measured by the time-of-flight method. The neutron spectrum was recovered from the measured neutron signals by the Monte Carlo method. In all experiments, the spatiotemporal characteristics of plasma in the Z-pinch constriction were measured by means of the diagnostic complex of the S-300 facility, which includes frame photography in the optical, VUV, and soft X-ray (SXR) spectral regions; optical streak imaging; SXR detection; and time-integrated SXR photography. The formation of hot dense plasma in the Z-pinch constriction was accompanied by the generation of hard X-ray (with photon energies E > 30 keV), SXR (with photon energies E > 1 keV and duration of 2–4 ns), and neutron emission. Anisotropy of the neutron energy distribution in the axial direction was revealed. The mean neutron energies measured in four directions at angles of 0° (above the anode), 90°, 180° (under the cathode), and 270° with respect to the load axis were found to be of 2.1 ± 0.1, 2.5 ± 0.1, 2.6 ± 0.2, and 2.4 ± 0.1 MeV, respectively. For a 1-mm-diameter neck, the maximum integral neutron yield was 6 × 109 neutrons. The anisotropy of neutron emission for a Z-pinch with a power-law distribution of high-energy ions is calculated.


Plasma Physics Reports | 2010

Formation of hot spots in the plasma of a Z-pinch produced from low-density deuterated polyethylene

A. A. Akunets; S. S. Anan’ev; Yu. L. Bakshaev; P. I. Blinov; V. A. Bryzgunov; V. V. Vikhrev; I. V. Volobuev; S. A. Dan’ko; A. A. Zelenin; E. D. Kazakov; V. D. Korolev; B. R. Meshcherov; S. L. Nedoseev; V. G. Pimenov; E. A. Smirnova; G. I. Ustroev; A. S. Chernenko; V. A. Shchagin

Results are presented from experimental studies of the plasma formation dynamics in a Z-pinch produced from a cylindrical microporous agar-agar load. The experiments were performed on the S-300 facility at a current of 2 MA and current rise time of 100 ns. To enhance the energy concentration, a deuterated polyethylene neck with a mass density of 50–75 μg/cm3 and diameter of 1–2 mm was made in the central part of the load. The spatiotemporal characteristics of the Z-pinch were studied using an optical streak camera and fast frame photography in the optical and soft X-ray spectral ranges. X-ray emission was detected using semiconductor and vacuum diodes, and neutron emission was studied by means of the time-of-flight method. It is found that, in the course of continuous plasma production, hot spots with a diameter of 100 μm form in the pinch plasma. The hot spots emit short soft X-ray pulses with a duration of 2–4 ns, as well as neutron pulses with an average neutron energy of about 2.45 MeV. The maximum neutron yield was found to be 4.5 × 109 neutrons per shot. The scenario of hot spot formation is adequately described by two-dimensional MHD simulations.


Plasma Physics Reports | 2006

Measurements of neutron emission from a Z-pinch constriction

Yu. L. Bakshaev; P. I. Blinov; V. V. Vikhrev; S. A. Dan’ko; V. D. Korolev; B. R. Meshcherov; S. L. Nedoseev; E. A. Smirnova; G. I. Ustroev; A. S. Chernenko; A. Yu. Shashkov

Results are presented from measurements of neutron emission generated during discharges with current amplitudes of up to 3 MA and a current rise time of ∼100 ns through profiled loads 10 mm in height and 4–5 mm in diameter. The experiments were performed with the S-300 eight-module high-power generator. To enhance the effect of energy accumulation, a≤1-mm-diameter neck was made in the central region of the load. An agar-agar foam of mass density 0.1 g/cm3 with an additive of deuterated polyethylene was used as a plasma-forming material. The formation of a hot plasma in the Z-pinch constriction was accompanied by the emission of soft X-ray (E = 1–10 keV), hard X-ray (E ≥ 30 keV), and neutron pulses with a minimum pulse duration of ≤10 ns. The neutron energy measured by the time-of-flight technique in three directions relative to the load axis (0°, 90°, and 180°) was found to be 2.5 ± 0.3 MeV, which corresponds to the dd reaction. The total neutral yield during the development of one constriction with a characteristic size of 100 μm attained 108 neutrons per pulse.


Plasma Devices and Operations | 2005

Wire-array implosion onto a deuterated fibre at the S-300 facility

D. Klir; J. Kravarik; P. Kubes; Yu. L. Bakshaev; P. I. Blinov; A. S. Chernenko; S.A. Dan'ko; V. D. Korolev; A. V. Korelskij; E. V. Kravchenko; A. Yu. Shaskov; G. I. Ustroev; M. I. Ivanov; Cai Hongchun

The implosion of a wire array z-pinch onto a deuterated fibre was studied on S-300 facility (4 MA, 700 kV and 100 ns; RRC Kurchatov Institute, Moscow). The peak power of soft X-rays exceeded 200 GW and the total emitted energy was 2–8 kJ. The radiation was close to the radiation of a black body with a temperature of 40 eV. The neutron yield from the D–D reaction reached 2 × 108 per shot. The mean energy of neutrons determined from time-of-flight analysis in the axial direction (downstream) was shifted from 2.45 MeV towards higher energies.


Plasma Physics Reports | 2010

X-pinch-based neutron source

S. S. Anan’ev; Yu. L. Bakshaev; P. I. Blinov; V. A. Bryzgunov; V. V. Vikhrev; S. A. Dan’ko; A. A. Zelenin; E. D. Kazakov; Yu. G. Kalinin; A. S. Kingsep; V. D. Korolev; E. A. Smirnova; G. I. Ustroev; A. S. Chernenko; V. A. Shchagin

Results are presented from experimental studies of the parameters of an X-pinch-based neutron source made of 70- to 80-μm-diameter deuterated polyethylene fibers. At currents of up to 1.7 MA and a current rise time of ∼150 ns, hot plasma spots were observed in the fiber crossing region. The formation of hot spots was accompanied by the generation of short soft X-ray pulses with a duration of 2–4 ns, as well as by neutron emission. The neutron energy was measured using the time-of-flight technique in four directions, at 0°, 90°, 180°, and 270° with respect to the load axis. The mean energy of the neutrons emitted along the axis towards the anode and cathode was found to be 2.0 ± 0.2 and 2.6 ± 0.1 MeV, respectively, and that of neutrons emitted in two opposite directions along the radius, 2.5 ± 0.1 and 2.4 ± 0.1 MeV. The maximum neutron yield at a current amplitude of 1.6 MA was of 1010 neutrons per shot.


Physica Scripta | 2006

Deuterated fibre Z-pinch on the S-300 generator

D. Klir; J. Kravarik; P. Kubes; Yu. L. Bakshaev; P. I. Blinov; A. S. Chernenko; S.A. Dan'ko; V. D. Korolev; G. I. Ustroev; M. I. Ivanov; Hongchun Cai

Dense Z-pinch experiments were carried out on the S-300 generator (3.5 MA, 100 ns, 0.15 Omega) at the Kurchatov Institute in Moscow. The experiments were performed at a peak current of 2 MA with a rise time of about 100 ns. The Z-pinch was formed from a deuterated polyethylene fibre of 100 mu m diameter and 1 cm length. The optical emission began early in the discharge and the coronal plasma expanded with a radial velocity of about 2 x 10(6) cm s(-1). The optical and XUV emission continued for several hundreds of nanoseconds. The peak power of sub-keV radiation reached 30 GW near the maximum current. The total emitted energy exceeded 5 kJ. The neutron yield from the D-D reaction reached 2 x 10(7) per shot. The mean energy of neutrons obtained from time-of-flight analysis in the axial (downstream) direction was near 2.45 MeV.

Collaboration


Dive into the G. I. Ustroev's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Klir

Czech Technical University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Kubes

Czech Technical University in Prague

View shared research outputs
Researchain Logo
Decentralizing Knowledge