Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G.M. Pasinetti is active.

Publication


Featured researches published by G.M. Pasinetti.


Neurobiology of Aging | 2000

Inflammation and Alzheimer’s disease

Haruhiko Akiyama; Steven W. Barger; Scott R. Barnum; Bonnie M. Bradt; Joachim Bauer; Greg M. Cole; Neil R. Cooper; Piet Eikelenboom; Mark R. Emmerling; Berndt L. Fiebich; Caleb E. Finch; Sally A. Frautschy; W. S. T. Griffin; Harald Hampel; Michael Hüll; Gary E. Landreth; Lih-Fen Lue; Robert E. Mrak; Ian R. Mackenzie; Patrick L. McGeer; M. Kerry O’Banion; Joel S. Pachter; G.M. Pasinetti; Carlos Plata–Salaman; Joseph Rogers; Russell Rydel; Yong Shen; Wolfgang J. Streit; Ronald Strohmeyer; Ikuo Tooyoma

Inflammation clearly occurs in pathologically vulnerable regions of the Alzheimers disease (AD) brain, and it does so with the full complexity of local peripheral inflammatory responses. In the periphery, degenerating tissue and the deposition of highly insoluble abnormal materials are classical stimulants of inflammation. Likewise, in the AD brain damaged neurons and neurites and highly insoluble amyloid beta peptide deposits and neurofibrillary tangles provide obvious stimuli for inflammation. Because these stimuli are discrete, microlocalized, and present from early preclinical to terminal stages of AD, local upregulation of complement, cytokines, acute phase reactants, and other inflammatory mediators is also discrete, microlocalized, and chronic. Cumulated over many years, direct and bystander damage from AD inflammatory mechanisms is likely to significantly exacerbate the very pathogenic processes that gave rise to it. Thus, animal models and clinical studies, although still in their infancy, strongly suggest that AD inflammation significantly contributes to AD pathogenesis. By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder.


Experimental Neurology | 1993

TGF-β1 mRNA Increases in Macrophage/Microglial Cells of the Hippocampus in Response to Deafferentation and Kainic Acid-Induced Neurodegeneration

Todd E. Morgan; Nancy R. Nichols; G.M. Pasinetti; Caleb E. Finch

This study examined TGF-beta 1 mRNA levels and cellular localization in the F344 rat hippocampus following deafferentation or kainic acid (KA)-induced neurodegeneration. By RNA solution hybridization, TGF-beta 1 transcripts were at low prevalence in intact adult rat hippocampus (0.02 pg/microgram total RNA). Four days after unilateral entorhinal cortex lesioning (ECL), TGF-beta 1 mRNA increased threefold in the ipsilateral hippocampus. This increase was localized to the outer molecular layer of the dentate gyrus, where gliosis, synapse loss, and synaptic reorganization occur. TGF-beta 1 mRNA also increased in the hippocampus after KA-induced limbic seizures, particularly in the areas of the hippocampus undergoing neurodegeneration. Microglia [OX-42 immunoreactive (IR) cells] responded to these two lesions with distinct morphological changes. Combined immunocytochemistry-in situ hybridization showed that TGF-beta 1 mRNA was localized to reactive microglia (OX-42-IR, with blunt processes), but not to resting ramified microglia (OX-42-IR, with numerous fine processes) or to astrocytes (GFAP-IR). After ECL, round macrophage-like cells (OX-42-IR with TGF-beta 1 mRNA) were seen at the wound site. Thus, brain macrophage/microglial cells produce TGF-beta 1 mRNA in the hippocampus in response to deafferentation and neurodegeneration.


Neuroscience | 1993

Transforming growth factor β1 and fibronectin messenger RNA in rat brain: Responses to injury and cell-type localization

G.M. Pasinetti; Nancy R. Nichols; Georges Tocco; Todd E. Morgan; Nicholas J. Laping; Caleb E. Finch

Transforming growth factor-beta 1 rapidly increases in adult rat brain in response to experimental lesions. This study characterized the schedule of changes, regional distribution, and cellular localization of striatal transforming growth factor-beta 1 messenger RNA and fibronectin messenger RNA following partial striatal deafferentation by frontal cortex ablation. Frontal cortex ablation induced striatal transforming growth factor-beta 1 messenger RNA elevations that coincided temporally and overlapped anatomically with the course of degeneration of cortico-striatal afferent fibers. Within three days post-lesioning, transforming growth factor-beta 1 messenger RNA was localized at the cortical wound. By 10 days, the anatomical site of transforming growth factor-beta 1 messenger RNA expression shifted to the dorsal half of the deafferented striatum and co-localized with OX-42+ immunostained microglia-macrophage at the site of degenerating afferent terminals. Similarly, fibronectin messenger RNA also shifted from the cortical wound to the deafferented striatum by 10 days post-lesioning. Fibronectin messenger RNA was localized to glial fibrillary acidic protein+ immunostained astrocytes surrounding degenerating corticostriatal afferents. Infusion of transforming growth factor-beta 1 peptide elevated striatal and cortical fibronectin messenger RNA. These findings suggest that microglia-macrophage associated with degenerating afferent fibres can upregulate transforming growth factor-beta 1 messenger RNA and may influence fibronectin messenger RNA synthesis in reactive astrocytes. This study suggests that transforming growth factor-beta 1 has a role in controlling extracellular matrix synthesis following brain injury, which is analogous to that in peripheral wound healing.


Neuroscience | 1994

Selective expression of clusterin (SGP-2) and complement C1qB and C4 during responses to neurotoxinsin vivo andin vitro

Irina Rozovsky; Todd E. Morgan; David A. Willoughby; M.M. Dugich-Djordjevich; G.M. Pasinetti; Steven A. Johnson; Caleb E. Finch

This study concerns expression of the genes encoding three multifunctional proteins: clusterin and two complement cascade components, C1q and C4. Previous work from this and other laboratories has established that clusterin, Clq and C4 messenger RNAs are elevated during Alzheimers disease, and in response to deafferenting and excitotoxic brain lesion. This study addresses hippocampal clusterin, ClqB and C4 expression in response to neurotoxins that caused selective neuron death. Kainate, which preferentially kills hippocampal CA3 pyramidal neurons but not dentate gyrus granule neurons induced clusterin immunoreactivity in CA1 and CA3 pyramidal neurons and adjacent astrocytes, but not in dentate gyrus granule neurons. In contrast, colchicine, which preferentially kills the dentate gyrus granule neurons, induced clusterin immunoreactivity in the local neuropil as punctate deposits, but not in the surviving or degenerating dentate gyrus granule neurons. Clusterin messenger RNA was increased in astrocytes. ClqB and C4 messenger RNAs increased within 48 h after kainate injections, particularly in the CA3 pyramidal layer, less in the dentate gyrus-CA4, and less in CA1. Clq immunoreactivity was detected in CA1 pyramidal neurons and also as small punctate deposits in the CA1 region at eight and 14 days after kainate. The increase of both clusterin and ClqB messenger RNAs after kainate injections was blocked by barbiturates that prevented seizures and neurodegeneration. In primary hippocampal neuronal cultures treated with glutamate, a subpopulation of cultured neurons that survived glutamate toxicity also had parallel elevations of clusterin and ClqB messenger RNA. In conclusion, cytotoxins that target selective hippocampal neurons increase the expression of both clusterin and ClqB in vivo and in vitro. These results show that elevations of clusterin messenger RNA or protein can be dissociated from each other and from cell death. These increased messenger RNAs were associated with immunoreactive deposits that differed by cell type and intra- versus extracellular locations. These results suggest that the complement system is involved in brain responses to injury.


Neuroscience | 1994

Response of striatal astrocytes to neuronal deafferentation: An immunocytochemical and ultrastructural study

Heng-Wei Cheng; T. Jiang; S.A. Brown; G.M. Pasinetti; Caleb E. Finch; T.H. McNeill

This ultrastructural and light microscopic immunocytochemical study describes the time course of anatomical changes that occur in striatal astrocytes in response to neuronal deafferentation in young adult rats and the coordinate distribution of two astrocytic proteins involved in reactive synaptogenesis, glial fibrillary acidic protein and clusterin. We found that following a unilateral lesion of the cerebral cortex, striatal astrocytes undergo a rapid ultrastructural transformation from a protoplasmic to a reactive type of astroglia and are the primary cells involved in the removal of degenerating axon terminals, but not axons of passage, from the neuropil. In addition, at 10 and 27 days postlesion, processes of reactive astrocytes are also seen to occupy vacant postsynaptic spines after degenerating presynaptic terminals are removed, suggesting that they may also participate in the reinnervation of the deafferented neurons. By immunocytochemistry, reactive astrocytes were characterized by a significant increase in the intensity of glial fibrillary acidic protein staining beginning at three days postlesion and lasting for at least 27 days postlesion. Reactive astrocytes were characterized by cellular hypertrophy and an increase in the density of immunoreactive processes distributed throughout the deafferented striatum. However, our analysis of astrocyte cell number found no evidence of astrocyte proliferation in response to the deafferentation lesion. Although previous in situ hybridization studies have reported elevated clusterin messenger RNA in reactive astrocytes after decortication, clusterin immunoreactivity was not seen in the cell soma of reactive astrocytes but was distributed as punctate deposits, ranging from 1 to 2 microns in diameter, within the neuropil of the deafferented striatum. At 10 days postlesion, the distribution of clusterin staining appeared as large aggregates of immunoreactive deposits adjacent to neurons. However, by 27 days postlesion, the aggregates of clusterin reaction product were replaced by a fine scattering of individual punctate deposits distributed evenly over the dorsal part of the deafferented striatum. These data support the notion that reactive astrocytes serve multiple, time-dependent roles in response to brain injury and are involved in both the removal of degenerative debris from the lesion site as well as in reforming the synaptic circuitry of the damaged brain. Our data suggest that, in response to decortication, reactive astrocytes are the primary cells responsible for removing degenerating axon terminals, but not axons of passage, from the deafferented striatum and that the coordinate increase in glial fibrillary acidic protein may serve to stabilize the extension of reactive astrocytic processes during phagocytosis.(ABSTRACT TRUNCATED AT 400 WORDS)


Journal of Neuroimmunology | 1995

Clusterin expression by astrocytes is influenced by transforming growth factor β1 and heterotypic cell interactions

Todd E. Morgan; Nicholas J. Laping; Irina Rozovsky; Tomiichiro Oda; T.H. Hogan; Caleb E. Finch; G.M. Pasinetti

This study characterizes the effect of transforming growth factor (TGF) beta 1 on clusterin expression in rat brain cells. 24 h after an acute unilateral intracerebroventricular infusion of TGF-beta 1, clusterin mRNA prevalence was increased in astrocytes that contained immunoreactive (IR) glial fibrillary acidic protein (GFAP). TGF-beta 1 selectively induced clusterin mRNA in astrocytes, as no clusterin mRNA was detected in neurons, oligodendrocytes, or microglia. TGF-beta 1 induced a bilateral increase in clusterin mRNA per astrocyte. Astrocyte hypertrophy (GFAP-IR area) was only increased on the ipsilateral side. In pure astrocyte cultures, TGF-beta 1 (200 pM) decreased clusterin mRNA levels and the rate of clusterin RNA transcription. However, in cultures of astrocytes that contained microglia and oligodendrocytes (mixed glia cultures), TGF-beta 1 caused a dose-dependent increase in astrocytic clusterin mRNA levels. The astrocytes that responded to TGF-beta 1 included two GFAP-IR subtypes, type 1 and 2. TGF-beta 1 increased clusterin protein in the conditioned medium from cultured glia, in either monotypic or mixed glial cultures. Thus, TGF-beta 1 and heterotypic cell interactions influence clusterin expression by astrocytes and may be important to the role of clusterin in multiple sclerosis, AIDS, and Alzheimers disease.


Neuroscience | 1993

Astrocytic messenger RNA responses to striatal deafferentation in male rat.

G.M. Pasinetti; H.W. Cheng; Dave Morgan; Martha Lampert-Etchells; T.H. McNeill; Caleb E. Finch

This investigation describes the schedule and regional distribution of astrocytic responses in striatum following deafferentation by unilateral frontal cortex ablation. In the ipsilateral deafferented striatum, glial fibrillary acidic protein and clusterin (sulfated glycoprotein-2) messengerRNA showed peak elevations by 10 days postlesioning (Northern blots). Vimentin messengerRNA responded faster, with a transient elevation by three days postlesioning. The messengerRNA for glial fibrillary acidic protein, clusterin and vimentin returned toward control levels by 27 days postlesioning. However, the neuronal marker growth-associated protein messengerRNA, was decreased at all postlesion times. By in situ hybridization, the increased glial fibrillary acidic protein messengerRNA and clusterin messengerRNA signals were localized mainly to the dorsal half of the ipsilateral deafferented striatum and followed the same schedule as found by Northern blots. Glial fibrillary acidic protein messengerRNA was widely diffused in the dorsal striatum and was excluded from fascicles of the internal capsule; a similar distribution was found for glial fibrillary acidic protein-immunopositive astrocytes. While clusterin messengerRNA signal showed a distinct clustering, its immunoreactivity appeared as deposits in the deafferented striatal neuropil; Western blots confirmed the immunocytochemical results. By in situ hybridization, vimentin messengerRNA was mostly localized to the cortical wound cavity dorsal to the deafferented striatum and overlapped the distribution of vimentin-immunopositive cells. These findings suggest a coordination of striatal astrocytic messengerRNA responses with the degeneration of corticostriatal afferents. We also compared these same parameters with those from published reports on the hippocampus after deafferenting lesions. Certain astrocyte molecular responses to deafferentation are detected about five days earlier in the hippocampus than in the striatum. This different schedule in response to decortication may pertain to differences in synaptic remodeling in the hippocampus vs striatum.


Brain Research | 1991

Striatal responses to decortication. I. Dopaminergic and astrocytic activities

G.M. Pasinetti; Steven G. Kohama; J.F. Reinhard; H.W. Cheng; T.H. McNeill; Caleb E. Finch

Unilateral ablation of the frontal cortex induced 30%-50% decrease of dopamine (DA) concentration in the ipsilateral striatum at 10 and 27 days after lesioning. There were increased ratios of dihydroxyphenylacetic acid (DOPAC): DA and homovanillic acid (HVA): DA by 20%-60% at 10 days post-lesioning, which suggest compensatory increases of DA metabolism. While no change in total striatal tyrosine hydroxylase (TH) polypeptide concentration was found at any post-lesion time, TH catalytic activity was decreased slightly (-25%) at 10 days. Among individual rats, at 3, 10 and 27 days post-lesioning, striatal DA concentration was inversely related to striatal glial fibrillary acidic protein (GFAP) concentration, a marker of astrocytic activity. The loss of DA was observed whether or not DA was normalized to striatal protein, which suggests that DA loss cannot be simply attributed to increased astrocytic proteins. These data suggest reciprocal relationships between the extent of astrocytic reactions after cortical deafferentation and striatal DA loss, which could involve local remodelling without primary damage to the nigro-striatal terminals.


Advances in Experimental Medicine and Biology | 1991

Molecular and morphological correlates following neuronal deafferentation: a cortico-striatal model.

G.M. Pasinetti; H.W. Cheng; J. F. Reinhard; Caleb E. Finch; T.H. McNeill

The ability of neurons to remodel the extent and configuration of their axons and dendrites plays an important role in maintaining function in the central nervous system in normal aging (Cotman and Anderson, 1983; Coleman and Flood, 1987). Conversely, the lack of an appropriate compensatory response of surviving cells to phenomena in the aged brain such as spontaneous neuron loss, deafferentation, or neurotransmitter deficits, is hypothesized to represent a common pathophysiological process in age-related neurodegenerative disorders (Coleman and Flood, 1986). Although the mechanisms governing synaptic remodelling in the adult brain are unknown, we hypothesize that it involves altered genomic expression in surviving neurons of afferent projection systems, whose terminals are induced to sprout and reinnervate deafferentated tissue (Cotman and Nieto-Sampedro, 1984). Moreover, since astrocytes participate in the process of removing degenerating axons and dendrites following a deafferentation lesion (Gage et al., 1988), alterations in the genomic response of these cells could be a critical factor leading to incomplete or delayed reorganization of new synaptic circuits (Scheff et al., 1989).


Archive | 1990

Gene Activity and Neurodegeneration in the Extrapyramidal System: A Progress Report on Molecular and Morphological Correlates

G.M. Pasinetti; T.H. McNeill; Caleb E. Finch

Functional neuronal plasticity and synaptic remodelling appear to be consistent feature of aging brain (Coleman et al., 1986). However, even in the absence of overt neuropathology, heterogeneous atrophic changes may occur in the brain with advancing age, suggesting differential mechanisms on specific brain regions, even in the same anatomical structure. For example hippocampal dentate granule neurons apparently remain intact and show hypertrophy of dendritic processes and increased perikaryal size in the aged brain (Coleman and Flood, 1987). Nonetheless many others e.g., pyramidal neurons of the hippocampus (Ringborg 1966) and cerebral cortex (Peters et al., 1987) show reduced perikaryal RNA content and decreased size of their perikarya, nuclei, or nucleoli. In addition, the nucleolar shrinkage is less in human locus ceruleus (LC) than substantia nigra (s.nigra) neurons (Mann and Yates, 1979), further confirming the cellular selectivity of changes. These studies support the general concept that age-related neuronal atrophic changes is not an universal or inevitable characteristic of the senescence, but may be brain region, cell type, and species specific.

Collaboration


Dive into the G.M. Pasinetti's collaboration.

Top Co-Authors

Avatar

Caleb E. Finch

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

T.H. McNeill

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Todd E. Morgan

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

H.W. Cheng

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dave Morgan

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Gary E. Landreth

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Greg M. Cole

University of California

View shared research outputs
Top Co-Authors

Avatar

Irina Rozovsky

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Joel S. Pachter

University of Connecticut Health Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge