Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. R. Tynan is active.

Publication


Featured researches published by G. R. Tynan.


Physics of Plasmas | 2001

Transport by intermittent convection in the boundary of the DIII-D tokamak

Jose Armando Boedo; D. Rudakov; R.A. Moyer; S. I. Krasheninnikov; D.G. Whyte; G. R. McKee; G. R. Tynan; M. Schaffer; P. Stangeby; P. West; S. Allen; T. Evans; R. J. Fonck; E.M. Hollmann; Anthony William Leonard; A. Mahdavi; G. Porter; M. S. Tillack; G. Y. Antar

Intermittent plasma objects (IPOs) featuring higher pressure than the surrounding plasma, and responsible for ∼50% of the E×BT radial transport, are observed in the scrape off layer (SOL) and edge of the DIII-D tokamak [J. Watkins et al., Rev. Sci. Instrum. 63, 4728 (1992)]. Conditional averaging reveals that the IPOs, produced at a rate of ∼3×103 s−1, are positively charged and also polarized, featuring poloidal electric fields of up to 4000 V/m. The IPOs move poloidally at speeds of up to 5000 m/s and radially with E×BT/B2 velocities of ∼2600 m/s near the last closed flux surface (LCFS), and ∼330 m/s near the wall. The IPOs slow down as they shrink in radial size from 4 cm at the LCFS to 0.5 cm near the wall. The IPOs appear in the SOL of both L and H mode discharges and are responsible for nearly 50% of the SOL radial E×B transport at all radii; however, they are highly reduced in absolute amplitude in H-mode conditions.


Physics of Plasmas | 2003

Transport by intermittency in the boundary of the DIII-D tokamak

J.A. Boedo; D.L. Rudakov; R.A. Moyer; G.R. McKee; R.J. Colchin; Michael J. Schaffer; P.G. Stangeby; W.P. West; S.L. Allen; T.E. Evans; R. J. Fonck; E.M. Hollmann; S. I. Krasheninnikov; A.W. Leonard; W. M. Nevins; M.A. Mahdavi; G.D. Porter; G. R. Tynan; D.G. Whyte; X.-Q. Xu

A271 TRANSPORT BY INTERMITTENCY IN THE BOUNDARY OF THE DIII-D TOKAMAK. Intermittent plasma objectives (IPOs) featuring higher pressure than the surrounding plasma, are responsible for {approx} 50% of the E x B{sub T} radial transport in the scrape off layer (SOL) of the DIII-D tokamak in L- and H-mode discharges. Conditional averaging reveals that the IPOs are positively charged and feature internal poloidal electric fields of up to 4000 V/m. The IPOs move radially with E x B{sub T}/B{sup 2} velocities of {approx} 2600 m/s near the last closed flux surface (LCFS), and {approx} 330 m/s near the wall. The IPOs slow down as they shrink in radial size from 4 cm at the LCFS to 0.5 cm near the wall. The skewness (i.e. asymmetry of fluctuations from the average) of probe and beam emission spectroscopy (BES) data indicate IPO formation at or near the LCFS and the existence of positive and negative IPOs which move in opposite directions. The particle content of the IPOs at the LCFS is linearly dependent on the local density and decays over {approx} 3 cm into the SOL while their temperature decays much faster ({approx} 1 cm).


Physics of Plasmas | 1995

Beyond paradigm: Turbulence, transport, and the origin of the radial electric field in low to high confinement mode transitions in the DIII‐D tokamak

R.A. Moyer; K. H. Burrell; T. N. Carlstrom; S. Coda; Robert W. Conn; E. J. Doyle; P. Gohil; R. J. Groebner; J. Kim; R. Lehmer; W. A. Peebles; M. Porkolab; C. L. Rettig; T. L. Rhodes; Ray Seraydarian; R. Stockdale; D. M. Thomas; G. R. Tynan; J. G. Watkins

The paradigm of shear suppression of turbulence as the mechanism for the low to high confinement mode (L to H) transition is examined by quantitative comparison of the predictions of the paradigm with experimental results from the DIII‐D tokamak [Plasma Physics and Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1986), p. 159]. The L to H transition trigger is V×B rotation, not the main ion pressure gradient. The radial electric field Er shear increases before the fluctuation suppression, consistent with increasing Er shear as the cause of the turbulence suppression. The spatial dependence of the turbulence reduction is consistent with shear suppression for negative Er shear. For positive Er shear, the turbulence suppression is consistent with the effect of Er curvature for modes for which an Er well is destabilizing. Finally, the transport barrier depends on the phase angle between the density and potential fluctuations inside the Er well, an effect not included in existing L to H...


Plasma Physics and Controlled Fusion | 2009

A review of experimental drift turbulence studies

G. R. Tynan; A. Fujisawa; G.R. McKee

Experimental drift turbulence and zonal flow studies in magnetically confined plasma experiments are reviewed. The origins of drift waves, transition to drift turbulence and drift turbulence?zonal flow interactions in open field line and toroidal closed flux surface experiments are discussed and the free energy sources, dissipation mechanisms and nonlinear dynamics of drift turbulence in the core, edge and scrape-off layer plasma regions are examined. Evidence that turbulence across these regions is linked and that turbulence-driven zonal flows exist is presented, and evidence that these flows help regulate the turbulent scale lengths, amplitude and fluxes is summarized. Seemingly contradictory reports exist regarding the scale of turbulent transport events; gyro-Bohm behavior of turbulence correlation lengths as well as evidence for long-range transport phenomena both exist. Changes in turbulence during and after transport barrier formation are summarized and compared. The inferred turbulent particle and heat fluxes due to turbulent transport are usually consistent with global confinement, and edge plasma momentum transport appears to be linked to plasma flows at the last-closed flux surface and in the open field line region. However, inconsistencies between observed transport and turbulence have sometimes been reported and are pointed out here. Special attention is given to open issues, and suggestions for future experimental studies are given.


Physics of Plasmas | 2009

Implementation and application of two synthetic diagnostics for validating simulations of core tokamak turbulence

C. Holland; A.E. White; G.R. McKee; M. W. Shafer; J. Candy; R. E. Waltz; L. Schmitz; G. R. Tynan

The deployment of multiple high-resolution, spatially localized fluctuation diagnostics on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] opens the door to a new level of core turbulence model validation. Toward this end, the implementation of synthetic diagnostics that model physical beam emission spectroscopy and correlation electron cyclotron emission diagnostics is presented. Initial results from their applications to local gyrokinetic simulations of two locations in a DIII-D L-mode discharge performed with the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] are also discussed. At normalized toroidal flux ρ=0.5, we find very good agreement between experiment and simulation in both the energy flows and fluctuation levels measured by both diagnostics. However, at ρ=0.75, GYRO underpredicts the observed energy flows by roughly a factor of 7, with rms fluctuation levels underpredicted by a factor of 3. Interestingly, at both locations we find good agreement in the sha...


Physics of Plasmas | 2005

On the transition to drift turbulence in a magnetized plasma column

Michael James Burin; G. R. Tynan; G. Y. Antar; N. Crocker; C. Holland

Experimental results from a magnetized argon plasma column demonstrate a controlled transition to a turbulent state as the magnetic field (B) strength is increased. At lower B there is an onset of fluctuations in density and potential. These are shown to be due to drift waves that have been modified by flow shear. As B is increased the character of the fluctuations undergoes several changes. These changes include a general decrease of coherence, an increase in the phase lag (between density and potential), and a straightening of the observed dispersion relation. Concomitantly, the intensifying and broadening fluctuation spectra lead to significant cross-field radial particle transport. Other nonlinear dynamical activity is inferred during the transition, e.g., three-wave interactions, the formation of localized structures (that do not significantly contribute to the net particle transport), and energy transfer to the largest available scales.


Physics of Plasmas | 2008

Measurements of core electron temperature and density fluctuations in DIII-D and comparison to nonlinear gyrokinetic simulations

A.E. White; L. Schmitz; G.R. McKee; C. Holland; W. A. Peebles; Troy Carter; M. W. Shafer; M. E. Austin; K. H. Burrell; J. Candy; J. C. DeBoo; E. J. Doyle; Michael A. Makowski; Ron Prater; T.L. Rhodes; G. M. Staebler; G. R. Tynan; R. E. Waltz; G. Wang

For the first time, profiles (0.3<ρ<0.9) of electron temperature and density fluctuations in a tokamak have been measured simultaneously and the results compared to nonlinear gyrokinetic simulations. Electron temperature and density fluctuations measured in neutral beam-heated, sawtooth-free low confinement mode (L-mode) plasmas in DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] are found to be similar in frequency and normalized amplitude, with amplitude increasing with radius. The measured radial profile of two fluctuation fields allows for a new and rigorous comparison with gyrokinetic results. Nonlinear gyrokinetic flux-tube simulations predict that electron temperature and density fluctuations have similar normalized amplitudes in L-mode. At ρ=0.5, simulation results match experimental heat diffusivities and density fluctuation amplitude, but overestimate electron temperature fluctuation amplitude and particle diffusivity. In contrast, simulations at ρ=0.75 do not match either the experimentally de...


Physics of Plasmas | 2012

Spatio-temporal evolution of the L → I → H transition

K. Miki; P. H. Diamond; Ö. D. Gürcan; G. R. Tynan; T. Estrada; L. Schmitz; G. Xu

We investigate the dynamics of the low(L) → high(H) transition using a time-dependent, one dimensional (in radius) model which self-consistently describes the time evolution of zonal flows (ZFs), mean flows (MFs), poloidal spin-up, and density and pressure profiles. The model represents the physics of ZF and MF competition, turbulence suppression via E×B shearing, and poloidal flows driven by turbulence. Numerical solutions of this model show that the L→H transition can occur via an intermediate phase (I-phase) which involves oscillations of profiles due to ZF and MF competition. The I-phase appears as a nonlinear transition wave originating at the edge boundary and propagates inward. Locally, I-phase exhibits the characteristics of a limit-cycle oscillation. All these observations are consistent with recent experimental results. We examine the trigger of the L→H transition, by defining a ratio of the rate of energy transfer from the turbulence to the zonal flow to the rate of energy input into the turbul...


Nuclear Fusion | 2007

Experimental progress on zonal flow physics in toroidal plasmas

A. Fujisawa; T. Ido; A. Shimizu; S. Okamura; K. Matsuoka; H. Iguchi; Y. Hamada; H. Nakano; S. Ohshima; K. Itoh; K. Hoshino; K. Shinohara; Y. Miura; Y. Nagashima; S.-I. Itoh; Michael Shats; Hua Xia; J.Q. Dong; L.W. Yan; K.J. Zhao; G. D. Conway; U. Stroth; A. V. Melnikov; L. G. Eliseev; Sergey E. Lysenko; S. V. Perfilov; C. Hidalgo; G. R. Tynan; C. Holland; P. H. Diamond

The present status of experiments on zonal flows in magnetic confinement experiments is examined. The innovative use of traditional and modern diagnostics has revealed unambiguously the existence of zonal flows, their spatio-temporal characteristics, their relationship to turbulence and their effects on confinement. In particular, a number of observations have been accumulated on the oscillatory branch of zonal flows, named geodesic acoustic modes, suggesting the necessity for theories to give their proper description. In addition to these basic properties of zonal flows, several new methods have elucidated the processes of zonal flow generation from turbulence. Further investigation of the relationship between zonal flows and confinement is strongly encouraged as cross-device activity including low temperature, toroidal and linear devices.


Plasma Physics and Controlled Fusion | 2006

Observation of turbulent-driven shear flow in a cylindrical laboratory plasma device

G. R. Tynan; C. Holland; J.H. Yu; A.N. James; D. Nishijima; M Shimada; N Taheri

A turbulent-generated azimuthally symmetric radially sheared plasma fluid flow is observed in a cylindrical magnetized helicon plasma device with no external sources of momentum input. A turbulent momentum conservation analysis shows that this shear flow is sustained against dissipation by the turbulent Reynolds stress generated by collisional drift fluctuations in the device. In the wavenumber domain this process is manifested via a nonlinear transfer of energy from small scales to larger scales. Simulations of collisional drift turbulence in this device have also been carried out and clearly show the formation of a shear flow quantitatively similar to that observed experimentally. The results integrate experiment and first-principle simulations and validate the basic theoretical picture of drift-wave/shear flow interactions.

Collaboration


Dive into the G. R. Tynan's collaboration.

Top Co-Authors

Avatar

P. H. Diamond

University of California

View shared research outputs
Top Co-Authors

Avatar

C. Holland

University of California

View shared research outputs
Top Co-Authors

Avatar

M. Xu

University of California

View shared research outputs
Top Co-Authors

Avatar

J.H. Yu

University of California

View shared research outputs
Top Co-Authors

Avatar

R.P. Doerner

University of California

View shared research outputs
Top Co-Authors

Avatar

Z. Yan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G.R. McKee

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Schmitz

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge