Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J.H. Yu is active.

Publication


Featured researches published by J.H. Yu.


Review of Scientific Instruments | 2008

Dust measurements in tokamaks (invited)

D.L. Rudakov; J.H. Yu; J.A. Boedo; E.M. Hollmann; S. I. Krasheninnikov; R.A. Moyer; S.H. Muller; A. Yu. Pigarov; M. Rosenberg; R.D. Smirnov; W.P. West; R. L. Boivin; B.D. Bray; N.H. Brooks; A.W. Hyatt; C.P.C. Wong; A.L. Roquemore; C.H. Skinner; W.M. Solomon; Svetlana V. Ratynskaia; M.E. Fenstermacher; M. Groth; C.J. Lasnier; A.G. McLean; P.C. Stangeby

Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 microm in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C(2) dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.


Plasma Physics and Controlled Fusion | 2006

Observation of turbulent-driven shear flow in a cylindrical laboratory plasma device

G. R. Tynan; C. Holland; J.H. Yu; A.N. James; D. Nishijima; M Shimada; N Taheri

A turbulent-generated azimuthally symmetric radially sheared plasma fluid flow is observed in a cylindrical magnetized helicon plasma device with no external sources of momentum input. A turbulent momentum conservation analysis shows that this shear flow is sustained against dissipation by the turbulent Reynolds stress generated by collisional drift fluctuations in the device. In the wavenumber domain this process is manifested via a nonlinear transfer of energy from small scales to larger scales. Simulations of collisional drift turbulence in this device have also been carried out and clearly show the formation of a shear flow quantitatively similar to that observed experimentally. The results integrate experiment and first-principle simulations and validate the basic theoretical picture of drift-wave/shear flow interactions.


Nuclear Fusion | 2013

Control and dissipation of runaway electron beams created during rapid shutdown experiments in DIII-D

E.M. Hollmann; M. E. Austin; J.A. Boedo; N.H. Brooks; N. Commaux; N.W. Eidietis; D.A. Humphreys; V.A. Izzo; A.N. James; T.C. Jernigan; A. Loarte; J. R. Martín-Solís; R.A. Moyer; J.M. Muñoz-Burgos; P.B. Parks; D.L. Rudakov; E. J. Strait; C. Tsui; M. A. Van Zeeland; J.C. Wesley; J.H. Yu

DIII-D experiments on rapid shutdown runaway electron (RE) beams have improved the understanding of the processes involved in RE beam control and dissipation. Improvements in RE beam feedback control have enabled stable confinement of RE beams out to the volt-second limit of the ohmic coil, as well as enabling a ramp down to zero current. Spectroscopic studies of the RE beam have shown that neutrals tend to be excluded from the RE beam centre. Measurements of the RE energy distribution function indicate a broad distribution with mean energy of order several MeV and peak energies of order 30?40?MeV. The distribution function appears more skewed towards low energies than expected from avalanche theory. The RE pitch angle appears fairly directed (????0.2) at high energies and more isotropic at lower energies (??<?100?keV). Collisional dissipation of RE beam current has been studied by massive gas injection of different impurities into RE beams; the equilibrium assimilation of these injected impurities appears to be reasonably well described by radial pressure balance between neutrals and ions. RE current dissipation following massive impurity injection is shown to be more rapid than expected from avalanche theory?this anomalous dissipation may be linked to enhanced radial diffusion caused by the significant quantity of high-Z impurities (typically argon) in the plasma. The final loss of RE beams to the wall has been studied: it was found that conversion of magnetic to kinetic energy is small for RE loss times smaller than the background plasma ohmic decay time of order 1?2?ms.


Physics of Plasmas | 2007

The origin of convective structures in the scrape-off layer of linear magnetic fusion devices investigated by fast imaging

G. Y. Antar; J.H. Yu; G. R. Tynan

A fast imaging camera is used to unveil the spatio-temporal properties of radially convective events in the CSDX linear plasma device [M. J. Burin et al., Phys. Plasmas, 12, 052320 (2005)]. The exposure time is set to 1μs and the time between frames to 10μs. The time series from a Langmuir probe and from a pixel in the 50000-frame movie are compared and cross-correlated. Excellent agreement between the two diagnostics is found for spatial scales greater than 2.5mm. The fluctuations inside the main plasma column are found to change between different poloidal mode numbers as a function of time. Accordingly, the power spectra determined in these linear devices reflect the sum over these modes. Outside the main plasma column, avaloids are observed to remain attached to the main plasma, hence their behavior does not become independent of the dynamics inside the main plasma column. Avaloid properties, assessed from imaging, agree with Langmuir probes done on various devices, except that the radial length is fou...


Plasma Physics and Controlled Fusion | 2008

Recent progress in understanding the behavior of dust in fusion devices

S. I. Krasheninnikov; A. Yu. Pigarov; R.D. Smirnov; M Rosenberg; Yasunori Tanaka; D.J. Benson; T. K. Soboleva; T.D. Rognlien; D A Mendis; B D Bray; D.L. Rudakov; J.H. Yu; W.P. West; A.L. Roquemore; C.H. Skinner; J. L. Terry; B. Lipschultz; A Bader; R. Granetz; C.S. Pitcher; N. Ohno; S. Takamura; S. Masuzaki; N. Ashikawa; Masaharu Shiratani; M. Tokitani; R Kumazawa; N. Asakura; T. Nakano; A. Litnovsky

It has been known for a long time that microscopic dust appears in plasmas in fusion devices. Recently it was shown that dust can be responsible for the termination of long- discharges. Also, in ITER-scale experiments dust can pose safety problems related to its chemical activity, tritium retention and radioactive content. In particular, the presence of dust in the vacuum chamber of ITER is one of the main concerns of the ITER licensing process. Here we review recent progress in the understanding of different experimental and theoretical aspects of the physics of dust dynamics and transport in fusion plasmas and discuss the remaining issues.


Nuclear Fusion | 2009

Dust studies in DIII-D and TEXTOR

D.L. Rudakov; A. Litnovsky; W.P. West; J.H. Yu; J.A. Boedo; B.D. Bray; S. Brezinsek; N.H. Brooks; M.E. Fenstermacher; M. Groth; E.M. Hollmann; A. Huber; A.W. Hyatt; S. I. Krasheninnikov; C.J. Lasnier; A.G. McLean; R.A. Moyer; A. Yu. Pigarov; V. Philipps; A. Pospieszczyk; R.D. Smirnov; J.P. Sharpe; W.M. Solomon; J.G. Watkins; C.P.C. Wong

Studies of naturally occurring and artificially introduced carbon dust are conducted in DIII-D and TEXTOR. In DIII-D, dust does not present operational concerns except immediately after entry vents. Submicrometre sized dust is routinely observed using Mie scattering from a Nd : Yag laser. The source is strongly correlated with the presence of type I edge localized modes (ELMs). Larger size (0.005–1 mm diameter) dust is observed by optical imaging, showing elevated dust levels after entry vents. Inverse dependence of the dust velocity on the inferred dust size is found from the imaging data. Heating of the dust particles by the neutral beam injection (NBI) and acceleration of dust particles by the plasma flows are observed. Energetic plasma disruptions produce significant amounts of dust; on the other hand, large flakes or debris falling into the plasma may induce a disruption. Migration of pre-characterized carbon dust is studied in DIII-D and TEXTOR by introducing micrometre-size particles into plasma discharges. In DIII-D, a sample holder filled with 30–40 mg of dust is inserted in the lower divertor and exposed, via sweeping of the strike points, to the diverted plasma flux of high-power ELMing H-mode discharges. After a brief dwell (~0.1 s) of the outer strike point on the sample holder, part of the dust penetrates into the core plasma, raising the core carbon density by a factor of 2–3 and resulting in a twofold increase in the radiated power. In TEXTOR, instrumented dust holders with 1–45 mg of dust are exposed in the scrape-off-layer 0–2 cm radially outside of the last closed flux surface in discharges heated with 1.4 MW of NBI. Launched in this configuration, the dust perturbed the edge plasma, as evidenced by a moderate increase in the edge carbon content, but did not penetrate into the core plasma.


Nuclear Fusion | 2011

Runaway electron confinement modelling for rapid shutdown scenarios in DIII-D, Alcator C-Mod and ITER

V.A. Izzo; E.M. Hollmann; A.N. James; J.H. Yu; D.A. Humphreys; L. L. Lao; P.B. Parks; P.E. Sieck; J.C. Wesley; R. Granetz; G. Olynyk; D.G. Whyte

MHD simulations of rapid shutdown scenarios by massive particle injection in DIII-D, Alcator C-Mod and ITER are performed in order to study runaway electron (RE) transport during mitigated disruptions. The simulations include a RE confinement model using drift-orbit calculations for test particles. A comparison of limited and diverted plasma shapes is studied in DIII-D simulations, and improved confinement in the limited shape is found due to both spatial localization and reduced toroidal spectrum in the nonlinear MHD activity. C-Mod simulations compare shutdown scenarios in which impurity (Ar) fuelling is concentrated in the edge versus the core, and the confinement of REs in the core is maintained until the onset of the m = 1/n = 1 mode, which is delayed in the case of edge deposition, relative to core deposition. But, the overall RE loss fraction is 100% regardless of Ar fuelling profile. A comparison of simulations across the three devices points to a trend of increased RE confinement with increasing device size, wherein all REs are lost in C-Mod, all are confined in ITER, and a partial loss is observed in DIII-D. This trend is related to a reduction in the fluctuating field amplitude near the plasma edge during the thermal-quench-induced MHD activity. The result bodes poorly for RE mitigation strategies in ITER that rely on MHD deconfinement of REs.


Nuclear Fusion | 2010

Demonstration of rapid shutdown using large shattered deuterium pellet injection in DIII-D

N. Commaux; L. R. Baylor; T.C. Jernigan; E.M. Hollmann; P.B. Parks; D.A. Humphreys; J.C. Wesley; J.H. Yu

A severe consequence of a disruption on large tokamaks such as ITER could be the generation of multi-megaelectronvolt electron beams that could damage the vacuum vessel and the structures of the machine if they hit the wall unmitigated. The mitigation of runaway electron beams is thus a key requirement for reliable operation of ITER. In order to achieve reliable disruption mitigation, a new fast shutdown technique has been developed: the injection of a large shattered cryogenic pellet in the plasma, which is expected to increase the electron density up to levels where the beam generation processes are mitigated by collisional losses. This technique has been implemented and tested for the first time ever on DIII-D. The first tests show evidence of an almost instantaneous deposition of more than 260 Pa m3 of deuterium deep in the core. Record local densities during the thermal quench were observed for each injection with a very high reliability. Pellet mass and plasma energy content scans show an improvement of the assimilation of the particles for higher plasma energy and larger pellet mass.


Nuclear Fusion | 2009

Off-axis neutral beam current drive for advanced scenario development in DIII-D

M. Murakami; Jin Myung Park; C. C. Petty; T.C. Luce; W.W. Heidbrink; T.H. Osborne; R. Prater; M. R. Wade; P.M. Anderson; M. E. Austin; N.H. Brooks; R.V. Budny; C. Challis; J.C. DeBoo; J.S. deGrassie; J.R. Ferron; P. Gohil; J. Hobirk; C.T. Holcomb; E.M. Hollmann; R.-M. Hong; A.W. Hyatt; J. Lohr; M. J. Lanctot; M. A. Makowski; D. McCune; P.A. Politzer; J. T. Scoville; H.E. St. John; T. Suzuki

Modification of the two existing DIII-D neutral beamlines is planned to allow vertical steering to provide off-axis neutral beam current drive (NBCD) peaked as far off-axis as half the plasma minor radius. New calculations for a downward-steered beam indicate strong current drive with good localization off-axis so long as the toroidal magnetic field, BT, and the plasma current, Ip, point in the same direction. This is due to good alignment of neutral beam injection (NBI) with the local pitch of the magnetic field lines. This model has been tested experimentally on DIII-D by injecting equatorially mounted NBs into reduced size plasmas that are vertically displaced with respect to the vessel midplane. The existence of off-axis NBCD is evident in the changes seen in sawtooth behaviour in the internal inductance. By shifting the plasma upwards or downwards, or by changing the sign of the toroidal field, off-axis NBCD profiles measured with motional Stark effect data and internal loop voltage show a difference in amplitude (40–45%) consistent with differences predicted by the changed NBI alignment with respect to the helicity of the magnetic field lines. The effects of NBI direction relative to field line helicity can be large even in ITER: off-axis NBCD can be increased by more than 30% if the BT direction is reversed. Modification of the DIII-D NB system will strongly support scenario development for ITER and future tokamaks as well as provide flexible scientific tools for understanding transport, energetic particles and heating and current drive.


Plasma Physics and Controlled Fusion | 2009

Studies of blob formation, propagation and transport mechanisms in basic experimental plasmas (TORPEX and CSDX)

Stefan Müller; C. Theiler; A. Fasoli; I. Furno; B. Labit; G. R. Tynan; M. Xu; Z. Yan; J.H. Yu

The findings of previous blob studies in the interchange-dominated regime of TORPEX helium (Muller et al 2007 Phys. Plasmas 14 110704) and hydrogen plasmas (Furno et al 2008 Phys. Rev. Lett. 100 055004) are summarized and compared. The onset of blobs is studied as a function of the vertical magnetic field Bz, proving the existence of blobs also in the drift-interchange-dominated regime characterized by Bz < 1 mT. These blobs, despite being inherently three-dimensional and sheath-disconnected, exhibit statistical properties similar to the blobs in the interchange regime. Using conditionally averaged density and potential measurements, the entire time line of an interchange instability leading to the formation of wave-like structure patterns and blobs could be experimentally observed. These results show that a background E × B shear flow is not essential for the generation of blobs and that the phase shift between density and potential during the generation of blobs is π/2 in all studied cases, demonstrating the interchange nature of blobs in TORPEX. Fast-camera and Langmuir probe measurements of blobs in the linear device CSDX (Tynan et al 2004 Phys. Plasmas 11 5195) support the hypothesis that an interchange instability is also responsible for the generation of blobs in the linear geometry, where the necessary effective gravity is provided by centrifugal forces.

Collaboration


Dive into the J.H. Yu's collaboration.

Top Co-Authors

Avatar

G. R. Tynan

University of California

View shared research outputs
Top Co-Authors

Avatar

E.M. Hollmann

University of California

View shared research outputs
Top Co-Authors

Avatar

R.A. Moyer

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Holland

University of California

View shared research outputs
Top Co-Authors

Avatar

M. Xu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.L. Rudakov

University of California

View shared research outputs
Top Co-Authors

Avatar

R.P. Doerner

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge