Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G.S. Magalhães is active.

Publication


Featured researches published by G.S. Magalhães.


Toxicon | 2010

Different regions of the class P-III snake venom metalloproteinase jararhagin are involved in binding to α2β1 integrin and collagen.

Isabelle Tanjoni; Karla S. Evangelista; Maisa S. Della-Casa; Diego Butera; G.S. Magalhães; Cristiani Baldo; Patricia Bianca Clissa; Irene Fernandes; Johannes A. Eble; Ana M. Moura-da-Silva

SVMPs are multi-domain proteolytic enzymes in which disintegrin-like and cysteine-rich domains bind to cell receptors, plasma or ECM proteins. We have recently reported that jararhagin, a P-III class SVMP, binds to collagen with high affinity through an epitope located within the Da-disintegrin sub-domain. In this study, we evaluated the binding of jararhagin to alpha(2)beta(1) integrin (collagen receptor) using monoclonal antibodies and recombinant jararhagin fragments. In solid phase assays, binding of jararhagin to alpha(2)beta(1) integrin was detectable from concentrations of 20 nM. Using recombinant fragments of jararhagin, only fragment JC76 (residues 344-421), showed a significant binding to recombinant alpha(2)beta(1) integrin. The anti-jararhagin monoclonal antibody MAJar 3 efficiently neutralised binding of jararhagin to collagen, but not to recombinant alpha(2)beta(1) integrin nor to cell-surface-exposed alpha(2)beta(1) integrin (alpha(2)-K562 transfected cells and platelets). The same antibody neutralised collagen-induced platelet aggregation. Our data suggest that jararhagin binding to collagen and alpha(2)beta(1) integrin occurs by two independent motifs, which are located on disintegrin-like and cysteine-rich domains, respectively. Moreover, toxin binding to collagen appears to be sufficient to inhibit collagen-induced platelet aggregation.


Toxicon | 2009

Cloning of serine protease cDNAs from Crotalus durissus terrificus venom gland and expression of a functional Gyroxin homologue in COS-7 cells

C.M. Yonamine; A.R.B. Prieto-da-Silva; G.S. Magalhães; Gandhi Rádis-Baptista; L. Morganti; F.C. Ambiel; R.M. Chura-Chambi; T. Yamane; M.A.P. Camillo

Gyroxin is one of main serine proteases of Crotalus durissus terrificus venom, representing about 2% of the protein content in the crude venom. It is a 33 kDa glycoprotein with 3.8% by weight of sugar moiety. This toxin induces hemotoxicity in mice and a neurological condition called barrel rotation syndrome. In the present work, we report the molecular cloning of five new nucleotide sequences from a cDNA library of the venom glands of a single specimen of C. d. terrificus. These sequences have been analyzed in silico with respect to their cDNA organization and similarity with other snake venom serine proteases (SVSPs). We also describe a rapid and efficient method for screening vectors for mammalian cell expression, based on the fact that SVSPs are difficult-to-express toxins due to the presence of several disulfide bonds and glycosylation in their structures. Thus, one of the Gyroxin cDNAs was subcloned into pSectag2 HygroA and pED vectors and used to transfect COS-7 cells. Expression of the functional recombinant Gyroxin isoform was achieved with this cell line with esterase activity in the conditioned culture medium, as revealed by immunoblot of secreted protein and standard anti-crotalic serum from Butantan Institute.


Biochimie | 2013

Cloning, expression and characterization of a phospholipase D from Loxosceles gaucho venom gland

G.S. Magalhães; Maria C. Caporrino; Maisa S. Della-Casa; Louise F. Kimura; José Pedro Prezotto-Neto; Daniel Fukuda; José Antonio Portes-Junior; Ana Gisele C. Neves-Ferreira; Marcelo L. Santoro; Katia C. Barbaro

Loxosceles venom comprises a mixture of diverse toxins that induces intense local inflammatory reaction, dermonecrotic injury, platelet aggregation, hemolytic anemia and acute renal failure. Among several toxins in the venom, phospholipases D (PLDs), also called dermonecrotic toxins, are the most important and best studied, since they account for the main effects observed in loxoscelism. Despite their importance, biological analysis of PLDs is hampered by the minute amounts normally purified from the venom, and therefore many efforts have been made to clone those toxins. However, to date, no PLD from Loxosceles gaucho has been obtained in a heterologous system. Thus, in this work we show the cloning of a PLD from L. gaucho venom gland, named LgRec1, which was successfully expressed in a bacterial system. LgRec1 evoked local reaction (edema, erythema, ecchymosis, and paleness), dermonecrosis and hemolysis. It was also able to hydrolyze sphingomyelin and promote platelet aggregation. ELISA and Western blot analysis showed that LgRec1 was recognized by an anti-L. gaucho venom serum, a commercial arachnidic antivenom as well as a monoclonal antibody raised against the dermonecrotic fraction of L. gaucho venom. In addition, LgRec1 demonstrated to be highly immunogenic and antibodies raised against this recombinant toxin inhibited local reaction (~65%) and dermonecrosis (~100%) elicited by L. gaucho whole venom. Since PLDs are considered the major components accounting for the local and systemic envenomation effects caused by spiders from genus Loxosceles, the information provided here may help to understand the mechanisms behind clinical symptomatology.


Journal of Proteome Research | 2014

Unraveling the Processing and Activation of Snake Venom Metalloproteinases

José Antonio Portes-Junior; Norma Yamanouye; Sylvia Mendes Carneiro; Paloma Knittel; Sávio Stefanini Sant'Anna; Fábio Cs Nogueira; Magno Junqueira; G.S. Magalhães; Gilberto B. Domont; Ana M. Moura-da-Silva

Snake venom metalloproteinases (SVMPs) are zinc-dependent enzymes responsible for most symptoms of human envenoming. Like matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase (ADAM) proteins, SVMPs are synthesized as zymogens, and enzyme activation is regulated by hydrolysis of their prodomain, but the processing of SVMPs is still unclear. In this study, we attempted to identify the presence of prodomain in different compartments of snake venom glands as zymogens or in the free form to elucidate some mechanism involved in SVMP activation. Using antibodies obtained by immunization with a recombinant prodomain, bands of zymogen molecular mass and prodomain peptides were detected mostly in gland extracts all along the venom production cycle and in the venom collected from the lumen at the peak of venom production. Prodomain was detected in secretory cells mostly in the secretory vesicles near the Golgi. We hypothesize that the processing of SVMPs starts within secretory vesicles and continues in the lumen of the venom gland just after enzyme secretion and involves different steps compared to ADAMs and MMPs but can be used as a model for studying the relevance of peptides resulting from prodomain processing and degradation for controlling the activity of metalloproteinases.


Toxicon | 2011

Insularin, a disintegrin from Bothrops insularis venom: inhibition of platelet aggregation and endothelial cell adhesion by the native and recombinant GST-insularin proteins.

Maisa S. Della-Casa; Inácio de L.M. Junqueira-de-Azevedo; Diego Butera; Patricia Bianca Clissa; Daiana S. Lopes; Solange M.T. Serrano; Daniel C. Pimenta; G.S. Magalhães; Paulo Lee Ho; Ana M. Moura-da-Silva

Insularin (INS) was obtained from Bothrops insularis venom by reversed-phase high-performance liquid chromatography using a C(18) column and characterized as a disintegrin by peptide mass fingerprint and inhibition of ADP-induced platelet aggregation. A cDNA coding for P-II a metalloproteinase/disintegrin was cloned from a cDNA library from B. insularis venom glands. The deduced protein sequence possesses 73 amino acid residues, including the N-terminal, internal peptides of native insularin, the ARGDNP-sequence and 12 cysteines in a conserved alignment. This cDNA fragment was subcloned in the pGEX-4T-1 vector and expressed in a prokaryotic expression system as a fusion protein with glutathione S-transferase (GST-INS). Both native and recombinant insularin inhibited ADP-induced platelet aggregation and endothelial cells (HUVEC) adhesion with similar activities indicating that GST-INS folded correctly and preserved the integrin-binding loop. Insularin may be a tool in studies that involve platelets and endothelial cell adhesion dependent on alphaIIbeta3 and alphavbeta3 integrins.


Toxicon | 2015

Characterization of Neuwiedin, a new disintegrin from Bothrops neuwiedi venom gland with distinct cysteine pattern.

I. Lima-dos-Santos; Maisa S. Della-Casa; José Antonio Portes-Junior; P.A.L. Calabria; G.S. Magalhães; Ana M. Moura-da-Silva

Disintegrins are cysteine-rich toxins containing the RGD motif exposed in a loop that binds integrins such as αIIbβ3, α5β1 and αvβ3. The flexibility of the RGD loop, controlled by the profile of the cysteine pairs and the residues flanking the RGD sequence, are key structural features for the functional activity of these molecules. Recently, our group reported a transcript in the venom gland of Bothrops neuwiedi corresponding to a new P-II SVMP precursor, BnMPIIx, in which the RGD-binding loop includes many substituted residues and unique cysteine residues at the C-terminal. In this paper, we obtained the recombinant disintegrin domain of BnMPIIx, Neuwiedin, which inhibited ADP-induced platelet aggregation, endothelial cell adhesion to fibrinogen and tube formation in Matrigel with no particular selectivity to αIIbβ3 or endothelial cell integrins. This value was also comparable to the inhibition observed with other recombinant disintegrins with conserved cysteine positions and residues in RGD loop. In this regard, Neuwiedin is an important component to understand the functional relevance of the diversity generated by accelerated evolution of venom toxins as well as to find out eventual new disintegrin-dependent targets that may be approached with disintegrins.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2014

Crystallization and preliminary X-ray diffraction analysis of a novel sphingomyelinase D from Loxosceles gaucho venom

Anwar Ullah; G.S. Magalhães; Rehana Masood; Ricardo B. Mariutti; Monika A. Coronado; Mario Tyago Murakami; Katia C. Barbaro; Raghuvir K. Arni

Brown spider envenomation results in dermonecrosis, intravascular coagulation, haemolysis and renal failure, mainly owing to the action of sphingomyelinases D (SMases D), which catalyze the hydrolysis of sphingomyelin to produce ceramide 1-phosphate and choline or the hydrolysis of lysophosphatidylcholine to produce lysophosphatidic acid. Here, the heterologous expression, purification, crystallization and preliminary X-ray diffraction analysis of LgRec1, a novel SMase D from Loxosceles gaucho venom, are reported. The crystals belonged to space group P21212, with unit-cell parameters a = 52.98, b = 62.27, c = 84.84 Å and diffracted to a maximum resolution of 2.6 Å.


Toxins | 2017

Toxin Fused with SUMO Tag: A New Expression Vector Strategy to Obtain Recombinant Venom Toxins with Easy Tag Removal inside the Bacteria

Lhiri H. A. L. Shimokawa-Falcao; Maria C. Caporrino; Katia C. Barbaro; Maisa S. Della-Casa; G.S. Magalhães

Many animal toxins may target the same molecules that need to be controlled in certain pathologies; therefore, some toxins have led to the formulation of drugs that are presently used, and many other drugs are still under development. Nevertheless, collecting sufficient toxins from the original source might be a limiting factor in studying their biological activities. Thus, molecular biology techniques have been applied in order to obtain large amounts of recombinant toxins into Escherichia coli. However, most animal toxins are difficult to express in this system, which results in insoluble, misfolded, or unstable proteins. To solve these issues, toxins have been fused with tags that may improve protein expression, solubility, and stability. Among these tags, the SUMO (small ubiquitin-related modifier) has been shown to be very efficient and can be removed by the Ulp1 protease. However, removing SUMO is a labor- and time-consuming process. To enhance this system, here we show the construction of a bicistronic vector that allows the expression of any protein fused to both the SUMO and Ulp1 protease. In this way, after expression, Ulp1 is able to cleave SUMO and leave the protein interest-free and ready for purification. This strategy was validated through the expression of a new phospholipase D from the spider Loxosceles gaucho and a disintegrin from the Bothrops insularis snake. Both recombinant toxins showed good yield and preserved biological activities, indicating that the bicistronic vector may be a viable method to produce proteins that are difficult to express.


Toxins | 2017

Recombinant Phospholipase D from Loxosceles gaucho Binds to Platelets and Promotes Phosphatidylserine Exposure

Daniel Fukuda; Maria C. Caporrino; Katia C. Barbaro; Maisa S. Della-Casa; Eliana L. Faquim-Mauro; G.S. Magalhães

Spider envenomation, from the genus Loxosceles, is frequently reported as a cause of necrotic lesions in humans around the world. Among the many components found in the venom of Loxosceles genus, phospholipases D (PLDs) are the most investigated, since they can cause a massive inflammatory response, dermonecrosis, hemolysis and platelet aggregation, among other effects. Even though the PLDs induce strong platelet aggregation, there are no studies showing how the PLDs interact with platelets to promote this effect. Since many agonists must interact with specific receptors on the platelet membrane to induce aggregation, it is reasonable to expect that the PLDs may, in some way, also interact with platelets, to induce this activity. Therefore, to address this possibility, in this work, a recombinant PLD, called LgRec1, from L. gaucho was fused to enhanced green fluorescent protein (EGFP) and used as a probe to detect the interaction of LgRec1 to platelets, by fluorescence-activated cell sorter (FACS) and confocal microscopy. The preservation of biological activities of this chimera toxin was also analyzed. As a first, the results show that LgRec1 does not require plasma components to bind to platelets, although these components are necessary to LgRec1 to induce platelet aggregation. Also, the attachment of LgRec1 to human platelets’ cell membranes suggests that the exposure of phosphatidylserine (PS) may act as a scaffold for coagulation factors. Therefore, the results add new information about the binding of Loxosceles PLDs to platelets, which may help unravel how these toxins promote platelet aggregation.


Annals of Hematology | 2015

Erratum to: A novel ELISA for diagnosis of Glanzmann’s thrombasthenia and the heterozygote carriers

Vivian Lobo; Shrimati Shetty; Bipin Kulkarni; Diego Butera; G.S. Magalhães; Kanjaksha Ghosh

Erratum to: Annals of Hematology 91(6): 917–921. DOI 10.1007/s00277-011-1390-1 . The authors inadvertently omitted 2 fellow authors from the author list: Dr. Diego Butera should be listed as the fourth author. His affiliation is Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia. His contributions are as follows: Designed, synthesized and produced EcAPv. He has no competing interests to declare. Dr. Geraldo S. Magalhaes should be listed as the fifth author. His affiliation is Laboratory of Immunopathology, Butantan Institute, São Paulo, SP, Brazil. His contributions are as follows: Produced more EcAPv when requested in October 2009. He has no competing interests to declare.

Collaboration


Dive into the G.S. Magalhães's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge