Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Inácio de Loiola Meirelles Junqueira-de-Azevedo is active.

Publication


Featured researches published by Inácio de Loiola Meirelles Junqueira-de-Azevedo.


Toxicon | 2008

Expressed sequence tags (ESTs) from the salivary glands of the tick Amblyomma cajennense (Acari: Ixodidae)

Isabel de Fátima Correia Batista; Ana Marisa Chudzinski-Tavassi; Fernanda Faria; Simone Michaela Simons; Darci M. Barros-Batestti; Marcelo B. Labruna; Luciana I. Leão; Paulo L Ho; Inácio de Loiola Meirelles Junqueira-de-Azevedo

The neotropical tick Amblyomma cajennense is a significant pest to domestic animals, the most frequently human-biting tick in South America and the main vector of Brazilian spotted fever (caused by Rickettsia rickettsii), a deadly human disease. The purpose of this study is to characterize the adult A. cajennense salivary gland transcriptome by expressed sequence tags (ESTs). We report the analysis of 1754 clones obtained from a cDNA library, which reveal mainly transcripts related to proteins involved in the hemostatic processes, especially proteases and their inhibitors. Remarkably, five types of possible serine protease inhibitors were found, including a molecule with a distinguished structure that contains repeats of the active motif of hirudin inhibitors. Besides, other components that may be active over the host immune system or acting as defensins against infecting microorganisms were also described, including a molecule similar to insect venom allergens. The conjunction of components from this transcriptome suggests a diverse strategy of A. cajennense tick during feeding, but emphasized in the coagulation system.


Archives of Biochemistry and Biophysics | 2010

A new Factor Xa inhibitor from Amblyomma cajennense with a unique domain composition.

Isabel de Fátima Correia Batista; O.H.P. Ramos; Janaina de Souza Ventura; Inácio de Loiola Meirelles Junqueira-de-Azevedo; Paulo Lee Ho; Ana Marisa Chudzinski-Tavassi

Bioactive compounds of great interest are found in the saliva of hematophagous organisms. While exploring a cDNA library derived from the salivary glands of the tick Amblyomma cajennense, a transcript that codes for a protein with unique structure (containing an N-terminal Kunitz-type domain and a C-terminus with no homology to any annotated sequences) was found. The recombinant mature form of this protein ( approximately 13.5kDa) was produced in Escherichia coli BL21 (DE3), and it was able to inhibit Factor Xa (FXa) and extend global blood clotting times in vitro and ex vivo. Static and dynamic predictions of its tertiary structure indicate regions that may be related to its FXa inhibitor function.


PLOS Neglected Tropical Diseases | 2012

A Transcriptomic View of the Proteome Variability of Newborn and Adult Bothrops jararaca Snake Venoms

André Zelanis; Débora Andrade-Silva; Marisa Maria Teixeira da Rocha; Maria de Fátima D. Furtado; Solange Serrano; Inácio de Loiola Meirelles Junqueira-de-Azevedo; Paulo Lee Ho

Background Snake bite is a neglected public health problem in communities in rural areas of several countries. Bothrops jararaca causes many snake bites in Brazil and previous studies have demonstrated that the pharmacological activities displayed by its venom undergo a significant ontogenetic shift. Similarly, the venom proteome of B. jararaca exhibits a considerable variation upon neonate to adult transition, which is associated with changes in diet from ectothermic prey in early life to endothermic prey in adulthood. Moreover, it has been shown that the Brazilian commercial antibothropic antivenom, which is produced by immunization with adult venom, is less effective in neutralizing newborn venom effects. On the other hand, venom gland transcripts of newborn snakes are poorly known since all transcriptomic studies have been carried out using mRNA from adult specimens. Methods/Principal Findings Here we analyzed venom gland cDNA libraries of newborn and adult B. jararaca in order to evaluate whether the variability demonstrated for its venom proteome and pharmacological activities was correlated with differences in the structure of toxin transcripts. The analysis revealed that the variability in B. jararaca venom gland transcriptomes is quantitative, as illustrated by the very high content of metalloproteinases in the newborn venom glands. Moreover, the variability is also characterized by the structural diversity of SVMP precursors found in newborn and adult transcriptomes. In the adult transcriptome, however, the content of metalloproteinase precursors considerably diminishes and the number of transcripts of serine proteinases, C-type lectins and bradykinin-potentiating peptides increase. Moreover, the comparison of the content of ESTs encoding toxins in adult male and female venom glands showed some gender-related differences. Conclusions/Significance We demonstrate a substantial shift in toxin transcripts upon snake development and a marked decrease in the metalloproteinase P-III/P-I class ratio which are correlated with changes in the venom proteome complexity and pharmacological activities.


Biochimie | 2015

Comparison of venoms from wild and long-term captive Bothrops atrox snakes and characterization of Batroxrhagin, the predominant class PIII metalloproteinase from the venom of this species.

Luciana Aparecida Freitas-de-Sousa; Diana R. Amazonas; Leijiane F. Sousa; S.S. Sant'Anna; M.Y. Nishiyama; Solange M.T. Serrano; Inácio de Loiola Meirelles Junqueira-de-Azevedo; H.M. Chalkidis; Ana M. Moura-da-Silva; R.H.V. Mourão

Comparisons between venoms from snakes kept under captivity or collected at the natural environment are of fundamental importance in order to obtain effective antivenoms to treat human victims of snakebites. In this study, we compared composition and biological activities of Bothrops atrox venom from snakes collected at Tapajós National Forest (Pará State, Brazil) or maintained for more than 10 years under captivity at Instituto Butantan herpetarium after have been collected mostly at Maranhão State, Brazil. Venoms from captive or wild snakes were similar except for small quantitative differences detected in peaks correspondent to phospholipases A2 (PLA2), snake venom metalloproteinases (SVMP) class PI and serine proteinases (SVSP), which did not correlate with fibrinolytic and coagulant activities (induced by PI-SVMPs and SVSPs). In both pools, the major toxic component corresponded to PIII-SVMPs, which were isolated and characterized. The characterization by mass spectrometry of both samples identified peptides that matched with a single PIII-SVMP cDNA characterized by transcriptomics, named Batroxrhagin. Sequence alignments show a strong similarity between Batroxrhagin and Jararhagin (96%). Batroxrhagin samples isolated from venoms of wild or captive snakes were not pro-coagulant, but inhibited collagen-induced platelet-aggregation, and induced hemorrhage and fibrin lysis with similar doses. Results suggest that in spite of environmental differences, venom variability was detected only among the less abundant components. In opposition, the most abundant toxin, which is a PIII-SVMP related to the key effects of the venom, is structurally conserved in the venoms. This observation is relevant for explaining the efficacy of antivenoms produced with venoms from captive snakes in human accidents inflicted at distinct natural environments.


Journal of Proteomics | 2017

An in-depth snake venom proteopeptidome characterization: Benchmarking Bothrops jararaca

Carolina A. Nicolau; Paulo C. Carvalho; Inácio de Loiola Meirelles Junqueira-de-Azevedo; André Teixeira-Ferreira; Magno Junqueira; Jonas Perales; Ana Gisele C. Neves-Ferreira; Richard H. Valente

A large-scale proteomic approach was devised to advance the understanding of venom composition. Bothrops jararaca venom was fractionated by OFFGEL followed by chromatography, generating peptidic and proteic fractions. The latter was submitted to trypsin digestion. Both fractions were separately analyzed by reversed-phase nanochromatography coupled to high resolution mass spectrometry. This strategy allowed deeper and joint characterizations of the peptidome and proteome (proteopeptidome) of this venom. Our results lead to the identification of 46 protein classes (with several uniquely assigned proteins per class) comprising eight high-abundance bona fide venom components, and 38 additional classes in smaller quantities. This last category included previously described B. jararaca venom proteins, common Elapidae venom constituents (cobra venom factor and three-finger toxin), and proteins typically encountered in lysosomes, cellular membranes and blood plasma. Furthermore, this report is the most complete snake venom peptidome described so far, both in number of peptides and in variety of unique proteins that could have originated them. It is hypothesized that such diversity could enclose cryptides, whose bioactivities would contribute to envenomation in yet undetermined ways. Finally, we propose that the broad range screening of B. jararaca peptidome will facilitate the discovery of bioactive molecules, eventually leading to valuable therapeutical agents. BIOLOGICAL SIGNIFICANCE Our proteopeptidomic strategy yielded unprecedented insights into the remarkable diversity of B. jararaca venom composition, both at the peptide and protein levels. These results bring a substantial contribution to the actual pursuit of large-scale protein-level assignment in snake venomics. The detection of typical elapidic venom components, in a Viperidae venom, reinforces our view that the use of this approach (hand-in-hand with transcriptomic and genomic data) for venom proteomic analysis, at the specimen-level, can greatly contribute for venom toxin evolution studies. Furthermore, data were generated in support of a previous hypothesis that venom gland secretory vesicles are specialized forms of lysosomes. Two testable hypotheses also emerge from the results of this work. The first is that a nucleobindin-2-derived protein could lead to prey disorientation during envenomation, aiding in its capture by the snake. The other being that the venoms peptidome might contain a population of cryptides, whose biological activities could lead to the development of new therapeutical agents.


Toxins | 2016

Colubrid Venom Composition: An -Omics Perspective

Inácio de Loiola Meirelles Junqueira-de-Azevedo; Pollyanna Fernandes Campos; Ana Tung Ching Ching; Stephen P. Mackessy

Snake venoms have been subjected to increasingly sensitive analyses for well over 100 years, but most research has been restricted to front-fanged snakes, which actually represent a relatively small proportion of extant species of advanced snakes. Because rear-fanged snakes are a diverse and distinct radiation of the advanced snakes, understanding venom composition among “colubrids” is critical to understanding the evolution of venom among snakes. Here we review the state of knowledge concerning rear-fanged snake venom composition, emphasizing those toxins for which protein or transcript sequences are available. We have also added new transcriptome-based data on venoms of three species of rear-fanged snakes. Based on this compilation, it is apparent that several components, including cysteine-rich secretory proteins (CRiSPs), C-type lectins (CTLs), CTLs-like proteins and snake venom metalloproteinases (SVMPs), are broadly distributed among “colubrid” venoms, while others, notably three-finger toxins (3FTxs), appear nearly restricted to the Colubridae (sensu stricto). Some putative new toxins, such as snake venom matrix metalloproteinases, are in fact present in several colubrid venoms, while others are only transcribed, at lower levels. This work provides insights into the evolution of these toxin classes, but because only a small number of species have been explored, generalizations are still rather limited. It is likely that new venom protein families await discovery, particularly among those species with highly specialized diets.


Toxicon | 2008

Identification and characterization of a new member of snake venom thrombin inhibitors from Bothrops insularis using a proteomic approach

Ana Lucia Oliveira-Carvalho; Patricia Ramos Guimarães; Paula A. Abreu; Denis L. S. Dutra; Inácio de Loiola Meirelles Junqueira-de-Azevedo; Carlos Rangel Rodrigues; Paulo Lee Ho; Helena C. Castro; Russolina B. Zingali

Snake venom C-type lectin-like proteins (CLPs) are ubiquitously found in Viperidae snake venoms and differ from the C-type lectins as they display different biological activities but no carbohydrate-binding activity. Previous analysis of the transcriptome obtained from the Bothrops insularis venom gland showed the presence of two clusters homologous to bothrojaracin (BJC) chains alpha and beta. In an effort to identify a new BJC-like molecule, we used an approach associated with proteomic technologies to identify the presence of the expressed protein and then to purify and characterize a new thrombin inhibitor from B. insularis venom. We also constructed homology models of this protein and BJC, which were compared with other C-type lectin-like family members and revealed several conserved features of this intriguing snake venom toxin family.


PLOS Neglected Tropical Diseases | 2016

A Heterologous Multiepitope DNA Prime/Recombinant Protein Boost Immunisation Strategy for the Development of an Antiserum against Micrurus corallinus (Coral Snake) Venom

Henrique Roman Ramos; Inácio de Loiola Meirelles Junqueira-de-Azevedo; Juliana Branco Novo; Karen Larissa Pereira de Castro; Clara Guerra Duarte; Ricardo A. Machado-de-Ávila; Carlos Chávez-Olórtegui; Paulo Lee Ho

Background Envenoming by coral snakes (Elapidae: Micrurus), although not abundant, represent a serious health threat in the Americas, especially because antivenoms are scarce. The development of adequate amounts of antielapidic serum for the treatment of accidents caused by snakes like Micrurus corallinus is a challenging task due to characteristics such as low venom yield, fossorial habit, relatively small sizes and ophiophagous diet. These features make it difficult to capture and keep these snakes in captivity for venom collection. Furthermore, there are reports of antivenom scarcity in USA, leading to an increase in morbidity and mortality, with patients needing to be intubated and ventilated while the toxin wears off. The development of an alternative method for the production of an antielapidic serum, with no need for snake collection and maintenance in captivity, would be a plausible solution for the antielapidic serum shortage. Methods and Findings In this work we describe the mapping, by the SPOT-synthesis technique, of potential B-cell epitopes from five putative toxins from M. corallinus, which were used to design two multiepitope DNA strings for the genetic immunisation of female BALB/c mice. Results demonstrate that sera obtained from animals that were genetically immunised with these multiepitope constructs, followed by booster doses of recombinant proteins lead to a 60% survival in a lethal dose neutralisation assay. Conclusion Here we describe that the genetic immunisation with a synthetic multiepitope gene followed by booster doses with recombinant protein is a promising approach to develop an alternative antielapidic serum against M. corallinus venom without the need of collection and the very challenging maintenance of these snakes in captivity.


Genome Biology and Evolution | 2016

Trends in the Evolution of Snake Toxins Underscored by an Integrative Omics Approach to Profile the Venom of the Colubrid Phalotris mertensi

Pollyanna Fernandes Campos; Débora Andrade-Silva; André Zelanis; Adriana Franco Paes Leme; Marisa Maria Teixeira da Rocha; Milene C. Menezes; Solange M.T. Serrano; Inácio de Loiola Meirelles Junqueira-de-Azevedo

Only few studies on snake venoms were dedicated to deeply characterize the toxin secretion of animals from the Colubridae family, despite the fact that they represent the majority of snake diversity. As a consequence, some evolutionary trends observed in venom proteins that underpinned the evolutionary histories of snake toxins were based on data from a minor parcel of the clade. Here, we investigated the proteins of the totally unknown venom from Phalotris mertensi (Dipsadinae subfamily), in order to obtain a detailed profile of its toxins and to appreciate evolutionary tendencies occurring in colubrid venoms. By means of integrated omics and functional approaches, including RNAseq, Sanger sequencing, high-resolution proteomics, recombinant protein production, and enzymatic tests, we verified an active toxic secretion containing up to 21 types of proteins. A high content of Kunitz-type proteins and C-type lectins were observed, although several enzymatic components such as metalloproteinases and an L-amino acid oxidase were also present in the venom. Interestingly, an arguable venom component of other species was demonstrated as a true venom protein and named svLIPA (snake venom acid lipase). This finding indicates the importance of checking the actual protein occurrence across species before rejecting genes suggested to code for toxins, which are relevant for the discussion about the early evolution of reptile venoms. Moreover, trends in the evolution of some toxin classes, such as simplification of metalloproteinases and rearrangements of Kunitz and Wap domains, parallel similar phenomena observed in other venomous snake families and provide a broader picture of toxin evolution.


Toxicon | 2011

Phospholipase A2 inhibitors (βPLIs) are encoded in the venom glands of Lachesis muta (Crotalinae, Viperidae) snakes

Rebeca Mascarenhas Lima; Maria Inácia Estevão-Costa; Inácio de Loiola Meirelles Junqueira-de-Azevedo; Paulo Lee Ho; Marcelo Ribeiro Vasconcelos Diniz; Consuelo Latorre Fortes-Dias

Phospholipase A(2) inhibitors (PLIs) are glycoproteins secreted by snake liver into the circulating blood aiming the self-protection against toxic venom phospholipases A(2). In the present study, we describe the first complete nucleotide sequence of a βPLI from venom glands of a New World snake, Lachesis muta. The deduced primary structure was compared to other known βPLIs and recent literature findings of other possible roles of PLIs in snakes are discussed.

Collaboration


Dive into the Inácio de Loiola Meirelles Junqueira-de-Azevedo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

André Zelanis

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge