Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Valentin Börner is active.

Publication


Featured researches published by G. Valentin Börner.


Cell | 2004

Crossover/Noncrossover Differentiation, Synaptonemal Complex Formation, and Regulatory Surveillance at the Leptotene/Zygotene Transition of Meiosis

G. Valentin Börner; Nancy Kleckner; Neil Hunter

Yeast mutants lacking meiotic proteins Zip1, Zip2, Zip3, Mer3, and/or Msh5 (ZMMs) were analyzed for recombination, synaptonemal complex (SC), and meiotic progression. At 33 degrees C, recombination-initiating double-strand breaks (DSBs) and noncrossover products (NCRs) form normally while formation of single-end invasion strand exchange intermediates (SEIs), double Holliday junctions, crossover products (CRs), and SC are coordinately defective. Thus, during wild-type meiosis, recombinational interactions are differentiated into CR and NCR types very early, prior to onset of stable strand exchange and independent of SC. By implication, crossover interference does not require SC formation. We suggest that SC formation may require interference. Subsequently, CR-designated DSBs undergo a tightly coupled, ZMM-promoted transition that yields SEI-containing recombination complexes embedded in patches of SC. zmm mutant phenotypes differ strikingly at 33 degrees C and 23 degrees C, implicating higher temperature as a positive effector of recombination and identifying a checkpoint that monitors local CR-specific events, not SC formation, at late leptotene.


Chromosome Research | 2007

ZMM proteins during meiosis: Crossover artists at work

Audrey Lynn; Rachel Soucek; G. Valentin Börner

Faithful segregation of homologous chromosomes (homologs) during meiosis depends on chiasmata which correspond to crossovers between parental DNA strands. Crossover forming homologous recombination takes place in the context of the synaptonemal complex (SC), a proteinaceous structure that juxtaposes homologs. The coordination between molecular recombination events and assembly of the SC as a structure that provides global connectivity between homologs represents one of the remarkable features of meiosis. ZMM proteins (also known as the synapsis initiation complex  =  SIC) play crucial roles in both processes providing a link between recombination and SC assembly. The ZMM group includes at least seven functionally collaborating, yet structurally diverse proteins: The transverse filament protein Zip1 establishes stable homolog juxtaposition by polymerizing as an integral component of the SC. Zip2, Zip3, and Zip4 likely mediate protein–protein interactions, while Mer3, Msh4, and Msh5 directly promote steps in DNA recombination. This review focuses on recent insights into ZMM functions in yeast meiosis and draws comparisons to ZMM-related proteins in other model organisms.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Yeast Pch2 promotes domainal axis organization, timely recombination progression, and arrest of defective recombinosomes during meiosis.

G. Valentin Börner; Aekam Barot; Nancy Kleckner

We show that, during budding yeast meiosis, axis ensemble Hop1/Red1 and synaptonemal complex (SC) component Zip1 tend to occur in alternating strongly staining domains. The widely conserved AAA+-ATPase Pch2 mediates this pattern, likely by means of direct intervention along axes. Pch2 also coordinately promotes timely progression of cross-over (CO) and noncross-over (NCO) recombination. Oppositely, in a checkpoint-triggering aberrant situation (zip1Δ), Pch2 mediates robust arrest of stalled recombination complexes, likely via nucleolar localization. We suggest that, during WT meiosis, Pch2 promotes progression of SC-associated CO and NCO recombination complexes at a regulated early–midpachytene transition that is rate-limiting for later events; in contrast, during defective meiosis, Pch2 ensures that aberrant recombination complexes fail to progress so that intermediates can be harmlessly repaired during eventual return to growth. Positive vs. negative roles of Pch2 in the two situations are analogous to positive vs. negative roles of Mec1/ATR, suggesting that Pch2 might mediate Mec1/ATR activity. We further propose that regulatory surveillance of normal and abnormal interchromosomal interactions in mitotic and meiotic cells may involve “structure-dependent interchromosomal interaction” (SDIX) checkpoints.


Nature Genetics | 2001

γ-H2AX illuminates meiosis

Neil Hunter; G. Valentin Börner; Nancy Kleckner

The temporal and functional relationships between the DNA events of meiotic recombination and the synaptonemal complex (SC), a meiosis-specific structure formed between homolog axes, are subjects of intense discussion and investigation. A new study provides evidence that initiation of recombination (through programmed double-strand breaks (DSBs)) precedes initiation of SC formation, and further suggests that progression of recombination is required for formation of SC on a region-by-region basis. These conclusions derive from immunocytological analysis of a phosphorylated histone variant, γ-H2AX, previously found to be characteristic of DSB repair in mitotic cells, and shown here to be recruited for specialized use during meiosis.


PLOS Genetics | 2009

Pch2 links chromosome axis remodeling at future crossover sites and crossover distribution during yeast meiosis.

Neeraj Joshi; Aekam Barot; Christine Jamison; G. Valentin Börner

Segregation of homologous chromosomes during meiosis I depends on appropriately positioned crossovers/chiasmata. Crossover assurance ensures at least one crossover per homolog pair, while interference reduces double crossovers. Here, we have investigated the interplay between chromosome axis morphogenesis and non-random crossover placement. We demonstrate that chromosome axes are structurally modified at future crossover sites as indicated by correspondence between crossover designation marker Zip3 and domains enriched for axis ensemble Hop1/Red1. This association is first detected at the zygotene stage, persists until double Holliday junction resolution, and is controlled by the conserved AAA+ ATPase Pch2. Pch2 further mediates crossover interference, although it is dispensable for crossover formation at normal levels. Thus, interference appears to be superimposed on underlying mechanisms of crossover formation. When recombination-initiating DSBs are reduced, Pch2 is also required for viable spore formation, consistent with further functions in chiasma formation. pch2Δ mutant defects in crossover interference and spore viability at reduced DSB levels are oppositely modulated by temperature, suggesting contributions of two separable pathways to crossover control. Roles of Pch2 in controlling both chromosome axis morphogenesis and crossover placement suggest linkage between these processes. Pch2 is proposed to reorganize chromosome axes into a tiling array of long-range crossover control modules, resulting in chiasma formation at minimum levels and with maximum spacing.


Molecular Genetics and Genomics | 1995

RNA editing of a group II intron in Oenothera as a prerequisite for splicing.

G. Valentin Börner; Mario Mörl; Bernd Wissinger; Axel Brennicke; Carlo Schmelzer

The trans-splicing group II intron c/d in the Oenothera mitochondrial nad1 gene is modified by RNA editing in domain 6. This C-to-U conversion generates the typical domain 6 structure, which prompted us to speculate that this RNA editing event might be essential for splicing. To test this hypothesis, we investigated the influence of unedited and edited sequences of the Oenothera intron on splicing in vitro. The stem of domain 6 of intron nad1-c/d was transplanted into the autocatalytic yeast intron aI5c, yielding chimeras with the genomic C and the edited U, respectively, 5′ of the branchpoint A. When incubated under self-splicing conditions, only the edited chimera was released as a lariat, while the precursor with the genomically coded C remained inactive. Our results support the hypothesis that Oenothera group II intron nadl-c/d cannot be spliced from the primary transcript without previous editing in domain 6.


FEBS Letters | 1997

RNA editing in metazoan mitochondria: staying fit without sex

G. Valentin Börner; Shin-ichi Yokobori; Mario Mörl; Marion Dörner; Svante Pääbo

RNA editing subsumes a number of functionally different mechanisms which have in common that they change the nucleotide sequence of RNA transcripts such that they become different from what would conventionally be predicted from their gene sequences. RNA editing has now been found in the organelles of numerous organisms as well as in a few nuclear transcripts. Most recently, it was shown to affect tRNAs in the mitochondria of several animals. The occurrence and evolutionary persistence of RNA editing is perplexing since backmutations in the genes might be assumed rapidly to eliminate the need for ‘correction’ of the gene sequences at the post‐transcriptional level. Here, we review the recent RNA editing systems discovered in animal mitochondria and propose that they have arisen as a mechanism counteracting the accumulation of mutations that occurs in asexual genetic system.


PLOS Genetics | 2016

Mek1 Down Regulates Rad51 Activity during Yeast Meiosis by Phosphorylation of Hed1

Tracy L. Callender; Raphaelle Laureau; Lihong Wan; Xiangyu Chen; Rima Sandhu; Saif Laljee; Sai Zhou; Ray T. Suhandynata; Evelyn Prugar; William A. Gaines; Young Ho Kwon; G. Valentin Börner; Alain Nicolas; Aaron M. Neiman; Nancy M. Hollingsworth

During meiosis, programmed double strand breaks (DSBs) are repaired preferentially between homologs to generate crossovers that promote proper chromosome segregation at Meiosis I. In many organisms, there are two strand exchange proteins, Rad51 and the meiosis-specific Dmc1, required for interhomolog (IH) bias. This bias requires the presence, but not the strand exchange activity of Rad51, while Dmc1 is responsible for the bulk of meiotic recombination. How these activities are regulated is less well established. In dmc1Δ mutants, Rad51 is actively inhibited, thereby resulting in prophase arrest due to unrepaired DSBs triggering the meiotic recombination checkpoint. This inhibition is dependent upon the meiosis-specific kinase Mek1 and occurs through two different mechanisms that prevent complex formation with the Rad51 accessory factor Rad54: (i) phosphorylation of Rad54 by Mek1 and (ii) binding of Rad51 by the meiosis-specific protein Hed1. An open question has been why inhibition of Mek1 affects Hed1 repression of Rad51. This work shows that Hed1 is a direct substrate of Mek1. Phosphorylation of Hed1 at threonine 40 helps suppress Rad51 activity in dmc1Δ mutants by promoting Hed1 protein stability. Rad51-mediated recombination occurring in the absence of Hed1 phosphorylation results in a significant increase in non-exchange chromosomes despite wild-type levels of crossovers, confirming previous results indicating a defect in crossover assurance. We propose that Rad51 function in meiosis is regulated in part by the coordinated phosphorylation of Rad54 and Hed1 by Mek1.


PLOS Biology | 2015

Phosphorylation of the Synaptonemal Complex Protein Zip1 Regulates the Crossover/Noncrossover Decision during Yeast Meiosis.

Xiangyu Chen; Ray T. Suhandynata; Rima Sandhu; Beth Rockmill; Neeman Mohibullah; Hengyao Niu; Jason Liang; Hsiao Chi Lo; Danny E. Miller; Huilin Zhou; G. Valentin Börner; Nancy M. Hollingsworth

Interhomolog crossovers promote proper chromosome segregation during meiosis and are formed by the regulated repair of programmed double-strand breaks. This regulation requires components of the synaptonemal complex (SC), a proteinaceous structure formed between homologous chromosomes. In yeast, SC formation requires the “ZMM” genes, which encode a functionally diverse set of proteins, including the transverse filament protein, Zip1. In wild-type meiosis, Zmm proteins promote the biased resolution of recombination intermediates into crossovers that are distributed throughout the genome by interference. In contrast, noncrossovers are formed primarily through synthesis-dependent strand annealing mediated by the Sgs1 helicase. This work identifies a conserved region on the C terminus of Zip1 (called Zip1 4S), whose phosphorylation is required for the ZMM pathway of crossover formation. Zip1 4S phosphorylation is promoted both by double-strand breaks (DSBs) and the meiosis-specific kinase, MEK1/MRE4, demonstrating a role for MEK1 in the regulation of interhomolog crossover formation, as well as interhomolog bias. Failure to phosphorylate Zip1 4S results in meiotic prophase arrest, specifically in the absence of SGS1. This gain of function meiotic arrest phenotype is suppressed by spo11Δ, suggesting that it is due to unrepaired breaks triggering the meiotic recombination checkpoint. Epistasis experiments combining deletions of individual ZMM genes with sgs1-md zip1-4A indicate that Zip1 4S phosphorylation functions prior to the other ZMMs. These results suggest that phosphorylation of Zip1 at DSBs commits those breaks to repair via the ZMM pathway and provides a mechanism by which the crossover/noncrossover decision can be dynamically regulated during yeast meiosis.


CSH Protocols | 2015

Induction and analysis of synchronous meiotic yeast cultures

G. Valentin Börner; Rita S. Cha

Meiosis in Saccharomyces cerevisiae can be induced by deprivation of nutrients. Here, we present a protocol for inducing synchronous meiosis in SK1, the most efficient and synchronous yeast strain for meiosis, by exposing SK1 cells to liquid medium that contains potassium acetate as a nonfermentable carbon source and lacks nitrogen. These synchronous meiotic yeast cultures can be subjected to a range of molecular and cytological analyses, making them useful for investigating the genetic and molecular determinants of meiosis.

Collaboration


Dive into the G. Valentin Börner's collaboration.

Top Co-Authors

Avatar

Rima Sandhu

Cleveland State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aekam Barot

Cleveland State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge