Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Venugopala Reddy is active.

Publication


Featured researches published by G. Venugopala Reddy.


Genes & Development | 2011

WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex

Ram Kishor Yadav; Mariano Perales; Jérémy Gruel; Thomas Girke; Henrik Jönsson; G. Venugopala Reddy

WUSCHEL (WUS) is a homeodomain transcription factor produced in cells of the niche/organizing center (OC) of shoot apical meristems. WUS specifies stem cell fate and also restricts its own levels by activating a negative regulator, CLAVATA3 (CLV3), in adjacent cells of the central zone (CZ). Here we show that the WUS protein, after being synthesized in cells of the OC, migrates into the CZ, where it activates CLV3 transcription by binding to its promoter elements. Using a computational model, we show that maintenance of the WUS gradient is essential to regulate stem cell number. Migration of a stem cell-inducing transcription factor into adjacent cells to activate a negative regulator, thereby restricting its own accumulation, is a theme that is unique to plant stem cell niches.


Development | 2004

Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana

G. Venugopala Reddy; Marcus G. Heisler; David W. Ehrhardt; Elliot M. Meyerowitz

Precise knowledge of spatial and temporal patterns of cell division, including number and orientation of divisions, and knowledge of cell expansion, is central to understanding morphogenesis. Our current knowledge of cell division patterns during plant and animal morphogenesis is largely deduced from analysis of clonal shapes and sizes. But such an analysis can reveal only the number, not the orientation or exact rate, of cell divisions. In this study, we have analyzed growth in real time by monitoring individual cell divisions in the shoot apical meristems (SAMs) of Arabidopsis thaliana. The live imaging technique has led to the development of a spatial and temporal map of cell division patterns. We have integrated cell behavior over time to visualize growth. Our analysis reveals temporal variation in mitotic activity and the cell division is coordinated across clonally distinct layers of cells. Temporal variation in mitotic activity is not correlated to the estimated plastochron length and diurnal rhythms. Cell division rates vary across the SAM surface. Cells in the peripheral zone (PZ) divide at a faster rate than in the central zone (CZ). Cell division rates in the CZ are relatively heterogeneous when compared with PZ cells. We have analyzed the cell behavior associated with flower primordium development starting from a stage at which the future flower comprises four cells in the L1 epidermal layer. Primordium development is a sequential process linked to distinct cellular behavior. Oriented cell divisions, in primordial progenitors and in cells located proximal to them, are associated with initial primordial outgrowth. The oriented cell divisions are followed by a rapid burst of cell expansion and cell division, which transforms a flower primordium into a three-dimensional flower bud. Distinct lack of cell expansion is seen in a narrow band of cells, which forms the boundary region between developing flower bud and the SAM. We discuss these results in the context of SAM morphogenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Gene expression map of the Arabidopsis shoot apical meristem stem cell niche

Ram Kishor Yadav; Thomas Girke; Sumana Pasala; Mingtang Xie; G. Venugopala Reddy

Despite the central importance of stem cells in plant growth and development, the molecular signatures associated with them have not been revealed. Shoot apical meristems (SAMs) harbor a small set of stem cells located at the tip of each plant and they are surrounded by several million differentiating cells. This imposes a major limitation in isolating pure populations of stem cells for genomic analyses. We have developed a system to isolate pure populations of distinct cell types of the SAMs, including stem cells. We have used this system to profile gene expression from 4 different cell samples of SAMs. The cell sample-specific gene expression profiling has resulted in a high-resolution gene expression map to reveal gene expression networks specific to individual spatial domains of SAMs. We demonstrate that the cell sample-specific expression profiling is sensitive in identifying rare transcripts expressed in a few specific subsets of cells of SAMs. Our extensive RNA in situ analysis reveals that the expression map can be used as a predictive tool in analyzing the spatial expression patterns of genes and it has led to the identification of unique gene expression patterns within the SAMs. Furthermore, our work reveals an enrichment of DNA repair and chromatin modification pathways in stem cells suggesting that maintenance of genome stability and flexible chromatin may be crucial for stem cell function. The gene expression map should guide future reverse genetics experiments, high-resolution analyses of cell–cell communication networks and epigenetic modifications.


Development | 2007

Pattern formation during de novo assembly of the Arabidopsis shoot meristem.

Sean P. Gordon; Marcus G. Heisler; G. Venugopala Reddy; Carolyn Ohno; Pradeep Das; Elliot M. Meyerowitz

Most multicellular organisms have a capacity to regenerate tissue after wounding. Few, however, have the ability to regenerate an entire new body from adult tissue. Induction of new shoot meristems from cultured root explants is a widely used, but poorly understood, process in which apical plant tissues are regenerated from adult somatic tissue through the de novo formation of shoot meristems. We characterize early patterning during de novo development of the Arabidopsis shoot meristem using fluorescent reporters of known gene and protein activities required for shoot meristem development and maintenance. We find that a small number of progenitor cells initiate development of new shoot meristems through stereotypical stages of reporter expression and activity of CUP-SHAPED COTYLEDON 2 (CUC2), WUSCHEL (WUS), PIN-FORMED 1 (PIN1), SHOOT-MERISTEMLESS (STM), FILAMENTOUS FLOWER (FIL, also known as AFO), REVOLUTA (REV), ARABIDOPSIS THALIANA MERISTEM L1 LAYER (ATML1) and CLAVATA 3 (CLV3). Furthermore, we demonstrate a functional requirement for WUS activity during de novo shoot meristem initiation. We propose that de novo shoot meristem induction is an easily accessible system for the study of patterning and self-organization in the well-studied model organism Arabidopsis.


Development | 2004

The Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development

Carolyn Ohno; G. Venugopala Reddy; Marcus G. Heisler; Elliot M. Meyerowitz

Important goals in understanding leaf development are to identify genes involved in pattern specification, and also genes that translate this information into cell types and tissue structure. Loss-of-function mutations at the JAGGED (JAG) locus result in Arabidopsis plants with abnormally shaped lateral organs including serrated leaves, narrow floral organs, and petals that contain fewer but more elongate cells. jag mutations also suppress bract formation in leafy, apetala1 and apetala2 mutant backgrounds. The JAG gene was identified by map-based cloning to be a member of the zinc finger family of plant transcription factors and encodes a protein similar in structure to SUPERMAN with a single C2H2-type zinc finger, a proline-rich motif and a short leucine-rich repressor motif. JAG mRNA is localized to lateral organ primordia throughout the plant but is not found in the shoot apical meristem. Misexpression of JAG results in leaf fusion and the development of ectopic leaf-like outgrowth from both vegetative and floral tissues. Thus, JAG is necessary for proper lateral organ shape and is sufficient to induce the proliferation of lateral organ tissue.


intelligent systems in molecular biology | 2005

Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem

Henrik Jönsson; Marcus G. Heisler; G. Venugopala Reddy; Vikas Agrawal; Victoria Gor; Bruce E. Shapiro; Eric Mjolsness; Elliot M. Meyerowitz

MOTIVATION The above-ground tissues of higher plants are generated from a small region of cells situated at the plant apex called the shoot apical meristem. An important genetic control circuit modulating the size of the Arabidopsis thaliana meristem is a feed-back network between the CLAVATA3 and WUSCHEL genes. Although the expression patterns for these genes do not overlap, WUSCHEL activity is both necessary and sufficient (when expressed ectopically) for the induction of CLAVATA3 expression. However, upregulation of CLAVATA3 in conjunction with the receptor kinase CLAVATA1 results in the downregulation of WUSCHEL. Despite much work, experimental data for this network are incomplete and additional hypotheses are needed to explain the spatial locations and dynamics of these expression domains. Predictive mathematical models describing the system should provide a useful tool for investigating and discriminating among possible hypotheses, by determining which hypotheses best explain observed gene expression dynamics. RESULTS We are developing a method using in vivo live confocal microscopy to capture quantitative gene expression data and create templates for computational models. We present two models accounting for the organization of the WUSCHEL expression domain. Our preferred model uses a reaction-diffusion mechanism in which an activator induces WUSCHEL expression. This model is able to organize the WUSCHEL expression domain. In addition, the model predicts the dynamical reorganization seen in experiments where cells, including the WUSCHEL domain, are ablated, and it also predicts the spatial expansion of the WUSCHEL domain resulting from removal of the CLAVATA3 signal. AVAILABILITY An extended description of the model framework and image processing algorithms can be found at http://www.computableplant.org, together with additional results and simulation movies. SUPPLEMENTARY INFORMATION http://www.computableplant.org/ and alternatively for a direct link to the page, http://computableplant.ics.uci.edu/bti1036 can be accessed.


Molecular Systems Biology | 2014

Plant stem cell maintenance involves direct transcriptional repression of differentiation program

Ram Kishor Yadav; Mariano Perales; Jérémy Gruel; Carolyn Ohno; Marcus G. Heisler; Thomas Girke; Henrik Jönsson; G. Venugopala Reddy

In animal systems, master regulatory transcription factors (TFs) mediate stem cell maintenance through a direct transcriptional repression of differentiation promoting TFs. Whether similar mechanisms operate in plants is not known. In plants, shoot apical meristems serve as reservoirs of stem cells that provide cells for all above ground organs. WUSCHEL, a homeodomain TF produced in cells of the niche, migrates into adjacent cells where it specifies stem cells. Through high‐resolution genomic analysis, we show that WUSCHEL represses a large number of genes that are expressed in differentiating cells including a group of differentiation promoting TFs involved in leaf development. We show that WUS directly binds to the regulatory regions of differentiation promoting TFs; KANADI1, KANADI2, ASYMMETRICLEAVES2 and YABBY3 to repress their expression. Predictions from a computational model, supported by live imaging, reveal that WUS‐mediated repression prevents premature differentiation of stem cell progenitors, being part of a minimal regulatory network for meristem maintenance. Our work shows that direct transcriptional repression of differentiation promoting TFs is an evolutionarily conserved logic for stem cell regulation.


Current Biology | 2011

Arabidopsis PLETHORA transcription factors control phyllotaxis.

Kalika Prasad; Stephen P. Grigg; Michalis Barkoulas; Ram Kishor Yadav; Gabino F. Sanchez-Perez; Violaine Pinon; Ikram Blilou; Hugo Hofhuis; Pankaj Dhonukshe; Carla Galinha; Ari Pekka Mähönen; Wally H. Müller; Smita Raman; Arie J. Verkleij; Berend Snel; G. Venugopala Reddy; Miltos Tsiantis; Ben Scheres

The pattern of plant organ initiation at the shoot apical meristem (SAM), termed phyllotaxis, displays regularities that have long intrigued botanists and mathematicians alike. In the SAM, the central zone (CZ) contains a population of stem cells that replenish the surrounding peripheral zone (PZ), where organs are generated in regular patterns. These patterns differ between species and may change in response to developmental or environmental cues [1]. Expression analysis of auxin efflux facilitators of the PIN-FORMED (PIN) family combined with modeling of auxin transport has indicated that organ initiation is associated with intracellular polarization of PIN proteins and auxin accumulation [2-10]. However, regulators that modulate PIN activity to determine phyllotactic patterns have hitherto been unknown. Here we reveal that three redundantly acting PLETHORA (PLT)-like AP2 domain transcription factors control shoot organ positioning in the model plant Arabidopsis thaliana. Loss of PLT3, PLT5, and PLT7 function leads to nonrandom, metastable changes in phyllotaxis. Phyllotactic changes in plt3plt5plt7 mutants are largely attributable to misregulation of PIN1 and can be recapitulated by reducing PIN1 dosage, revealing that PLT proteins are key regulators of PIN1 activity in control of phyllotaxis.


Current Opinion in Plant Biology | 2012

Stem cell maintenance in shoot apical meristems

Mariano Perales; G. Venugopala Reddy

Stem cell homeostasis in shoot apical meristems of higher plants is regulated through a dynamic balance between spatial regulation of gene expression, cell growth patterns and patterns of differentiation. Cell-cell communication mediated by both the local factors and long-range signals have been implicated in stem cell homeostasis. Here we have reviewed recent developments on spatio-temporal regulation of cell-cell communication processes with an emphasis on how ubiquitously utilized signals such as plant hormones function with local factors in mediating stem cell homeostasis. We also provide a brief overview of how the activity of ubiquitously utilized epigenetic regulators are modulated locally to orchestrate gene expression.


Developmental Biology | 2003

Combinatorial expression of Prospero, Seven-up, and Elav identifies progenitor cell types during sense-organ differentiation in the Drosophila antenna

Anindya Sen; G. Venugopala Reddy; Veronica Rodrigues

The Drosophila antenna has a diversity of chemosensory organs within a single epidermal field. We have some idea from recent studies of how the three broad categories of sense-organs are specified at the level of progenitor choice. However, little is known about how cell fates within single sense-organs are specified. Selection of individual primary olfactory progenitors is followed by organization of groups of secondary progenitors, which divide in a specific order to form a differentiated sensillum. The combinatorial expression of Prospero Elav, and Seven-up allows us to distinguish three secondary progenitor fates. The lineages of these cells have been established by clonal analysis and marker distribution following mitosis. High Notch signaling and the exclusion of these markers identifies PIIa; this cell gives rise to the shaft and socket. The sheath/neuron lineage progenitor PIIb, expresses all three markers; upon division, Prospero asymmetrically segregates to the sheath cell. In the coeloconica, PIIb undergoes an additional division to produce glia. PIIc is present in multiinnervated sense-organs and divides to form neurons. An understanding of the lineage and development of olfactory sense-organs provides a handle for the analysis of how olfactory neurons acquire distinct terminal fates.

Collaboration


Dive into the G. Venugopala Reddy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elliot M. Meyerowitz

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Min Liu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen Snipes

University of California

View shared research outputs
Top Co-Authors

Avatar

Thomas Girke

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge