Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. W. K. Moore is active.

Publication


Featured researches published by G. W. K. Moore.


Science | 2012

Massive phytoplankton blooms under Arctic Sea ice

Kevin R. Arrigo; Donald K. Perovich; Robert S. Pickart; Zachary W. Brown; Gert L. van Dijken; Kate E. Lowry; Matthew M. Mills; Molly A. Palmer; William M. Balch; Frank Bahr; Nicholas R. Bates; Claudia R. Benitez-Nelson; Bruce C. Bowler; Emily F. Brownlee; Jens K. Ehn; Karen E. Frey; Rebecca Garley; Samuel R. Laney; Laura C. Lubelczyk; Jeremy T. Mathis; A. Matsuoka; B. Greg Mitchell; G. W. K. Moore; E. Ortega-Retuerta; Sharmila Pal; Chris Polashenski; Rick A. Reynolds; Brian Schieber; Heidi M. Sosik; Michael Stephens

In midsummer, diatoms have taken advantage of thinning ice cover to feed in nutrient-rich waters. Phytoplankton blooms over Arctic Ocean continental shelves are thought to be restricted to waters free of sea ice. Here, we document a massive phytoplankton bloom beneath fully consolidated pack ice far from the ice edge in the Chukchi Sea, where light transmission has increased in recent decades because of thinning ice cover and proliferation of melt ponds. The bloom was characterized by high diatom biomass and rates of growth and primary production. Evidence suggests that under-ice phytoplankton blooms may be more widespread over nutrient-rich Arctic continental shelves and that satellite-based estimates of annual primary production in these waters may be underestimated by up to 10-fold.


Nature | 2003

Deep convection in the Irminger Sea forced by the Greenland tip jet.

Robert S. Pickart; Michael A. Spall; Mads H. Ribergaard; G. W. K. Moore; Ralph F. Milliff

Open-ocean deep convection, one of the processes by which deep waters of the worlds oceans are formed, is restricted to a small number of locations (for example, the Mediterranean and Labrador seas). Recently, the southwest Irminger Sea has been suggested as an additional location for open-ocean deep convection. The deep water formed in the Irminger Sea has the characteristic temperature and salinity of the water mass that fills the mid-depth North Atlantic Ocean, which had been believed to be formed entirely in the Labrador basin. Here we show that the most likely cause of the convection in the Irminger Sea is a low-level atmospheric jet known as the Greenland tip jet, which forms periodically in the lee of Cape Farewell, Greenland, and is associated with elevated heat flux and strong wind stress curl. Using a history of tip-jet events derived from meteorological land station data and a regional oceanic numerical model, we demonstrate that deep convection can occur in this region when the North Atlantic Oscillation Index is high, which is consistent with observations. This mechanism of convection in the Irminger Sea differs significantly from those known to operate in the Labrador and Mediterranean seas.


Journal of Physical Oceanography | 2002

A Comparison of Surface Layer and Surface Turbulent Flux Observations over the Labrador Sea with ECMWF Analyses and NCEP Reanalyses

Ian A. Renfrew; G. W. K. Moore; Peter S. Guest; Karl Bumke

Comparisons are made between a time series of meteorological surface layer observational data taken on board the R/V Knorr, and model analysis data from the European Centre for Medium-Range Weather Forecasting (ECMWF) and the National Centers for Environmental Prediction (NCEP). The observational data were gathered during a winter cruise of the R/V Knorr, from 6 February to 13 March 1997, as part of the Labrador Sea Deep Convection Experiment. The surface layer observations generally compare well with both model representations of the wintertime atmosphere. The biases that exist are mainly related to discrepancies in the sea surface temperature or the relative humidity of the analyses. The surface layer observations are used to generate bulk estimates of the surface momentum flux, and the surface sensible and latent heat fluxes. These are then compared with the model-generated turbulent surface fluxes. The ECMWF surface sensible and latent heat flux time series compare reasonably well, with overestimates of only 13% and 10%, respectively. In contrast, the NCEP model overestimates the bulk fluxes by 51% and 27%, respectively. The differences between the bulk estimates and those of the two models are due to different surface heat flux algorithms. It is shown that the roughness length formula used in the NCEP reanalysis project is inappropriate for moderate to high wind speeds. Its failings are acute for situations of large air–sea temperature difference and high wind speed, that is, for areas of high sensible heat fluxes such as the Labrador Sea, the Norwegian Sea, the Gulf Stream, and the Kuroshio. The new operational NCEP bulk algorithm is found to be more appropriate for such areas. It is concluded that surface turbulent flux fields from the ECMWF are within the bounds of observational uncertainty and therefore suitable for driving ocean models. This is in contrast to the surface flux fields from the NCEP reanalysis project, where the application of a more suitable algorithm to the model surface-layer meteorological data is recommended


Deep-sea Research Part I-oceanographic Research Papers | 2003

Is Labrador Sea Water formed in the Irminger basin

Robert S. Pickart; Fiammetta Straneo; G. W. K. Moore

Abstract Present day thinking contends that Labrador Sea Water (LSW), one of the major watermasses of the North Atlantic, is formed exclusively in the Labrador basin via deep wintertime convection. It is argued herein that LSW is likely formed at a second location—the southwest Irminger Sea. We base this on two pieces of evidence: (1) tracer observations in the western subpolar gyre are inconsistent with a single source and (2) the combination of oceanic and atmospheric conditions that lead to convection in the Labrador Sea is present as well east of Greenland. Hydrographic data (both recent and climatological) are used, in conjunction with an advective–diffusive numerical model, to demonstrate that the spatial distribution of LSW and its inferred spreading rate are inconsistent with a Labrador Sea-only source. The spreading would have to be unrealistically fast, and could not produce the extrema of LSW properties observed in the Irminger basin. At the same time, the set of conditions necessary for deep convection to occur—a preconditioned water column, cyclonic circulation, and strong air–sea buoyancy fluxes—are satisfied in the Irminger Sea. Using observed parameters, a mixed-layer model shows that, under the right conditions, overturning can occur in the Irminger Sea to a depth of 1500– 2000 m , forming LSW.


Journal of Climate | 2005

Tip Jets and Barrier Winds: A QuikSCAT Climatology of High Wind Speed Events around Greenland

G. W. K. Moore; Ian A. Renfrew

The high topography of Greenland results in a number of orographically induced high wind speed flows along its coast that are of interest from both a severe weather and climate perspective. Here the surface wind field dataset from the NASA–JPL SeaWinds scatterometer on board the Quick Scatterometer (QuikSCAT) satellite is used to develop a wintertime climatology of these flows. The high spatial resolution and the twice-daily sampling of the SeaWinds instrument allows for a much more detailed view of the surface winds around Greenland than has been previously possible. Three phenomena stand out as the most distinctive features of the surface wind field during the winter months: the previously identified tip jets and reverse tip jets, as well as the hitherto unrecognized barrier flows along its southeast coast in the vicinity of the Denmark Strait. Peak surface wind speeds associated with these phenomena can be as large as 50 m s 1 with winds over 25 m s 1 occurring approximately 10%–15% of the time at each location. A compositing technique is used to show that each type of flow is the result of an interaction between a synoptic-scale parent cyclone and the high topography of Greenland. In keeping with previous work, it is argued that tip jets are caused by a combination of conservation of the Bernoulli function during orographic descent and acceleration due to flow splitting as stable air passes around Cape Farewell, while barrier winds are a geostrophic response to stable air being forced against high topography. It is proposed that reverse tip jets occur when barrier winds reach the end of the topographic barrier and move from a geostrophic to a gradient wind balance, becoming supergeostrophic as a result of their anticyclonic curvature.


Monthly Weather Review | 1999

An Extreme Cold-Air Outbreak over the Labrador Sea: Roll Vortices and Air–Sea Interaction

Ian A. Renfrew; G. W. K. Moore

Abstract Observational data from two research aircraft flights are presented. The flights were planned to investigate the air–sea interaction during an extreme cold-air outbreak, associated with the passage of a synoptic-scale low pressure system over the Labrador Sea during 8 February 1997. This is the first such aircraft-based investigation in this remote region. Both high-level dropsonde and low-level flight-level data were collected. The objectives were twofold: to map out the structure of the roll vortices that cause the ubiquitous cloud streets seen in satellite imagery, and to estimate the sensible and latent heat fluxes between the ocean and atmosphere during the event. The latter was achieved by a Lagrangian analysis of the flight-level data. The flights were part of the Labrador Sea Deep Convection Experiment, investigating deep oceanic convection, and were planned to overpass a research vessel in the area. The aircraft-observed roll vortices had a characteristic wavelength of 4–5 km, particular...


Journal of Geophysical Research | 2009

Upwelling on the continental slope of the Alaskan Beaufort Sea : storms, ice, and oceanographic response

Robert S. Pickart; G. W. K. Moore; Daniel J. Torres; Paula S. Fratantoni; Roger A. Goldsmith; Jiayan Yang

[1] The characteristics of Pacific-born storms that cause upwelling along the Beaufort Sea continental slope, the oceanographic response, and the modulation of the response due to sea ice are investigated. In fall 2002 a mooring array located near 152W measured 11 significant upwelling events that brought warm and salty Atlantic water to shallow depths. When comparing the storms that caused these events to other Aleutian lows that did not induce upwelling, interesting trends emerged. Upwelling occurred most frequently when storms were located in a region near the eastern end of the Aleutian Island Arc and Alaskan Peninsula. Not only were these storms deep but they generally had northward-tending trajectories. While the steering flow aloft aided this northward progression, the occurrence of lee cyclogenesis due to the orography of Alaska seems to play a role as well in expanding the meridional influence of the storms. In late fall and early winter both the intensity and frequency of the upwelling diminished significantly at the array site. It is argued that the reduction in amplitude was due to the onset of heavy pack ice, while the decreased frequency was due to two different upper-level atmospheric blocking patterns inhibiting the far field influence of the storms.


Bulletin of the American Meteorological Society | 2008

THE GREENLAND FLOW DISTORTION EXPERIMENT

Ian A. Renfrew; Guðrún Nína Petersen; S. D. Outten; David A. J. Sproson; G. W. K. Moore; C. Hay; T. Ohigashi; S. Zhang; Jón Egill Kristjánsson; I. Fore; Haraldur Ólafsson; Suzanne L. Gray; Emma A. Irvine; K. Bovis; Philip R. A. Brown; R. Swinbank; Thomas W. N. Haine; A. Lawrence; Robert S. Pickart; M. Shapiro; A. Woolley

Greenland has a major influence on the atmospheric circulation of the North Atlantic-western European region, dictating the location and strength of mesoscale weather systems around the coastal seas of Greenland and directly influencing synoptic-scale weather systems both locally and downstream over Europe. High winds associated with the local weather systems can induce large air-sea fluxes of heat, moisture, and momentum in a region that is critical to the overturning of the thermohaline circulation, and thus play a key role in controlling the coupled atmosphere-ocean climate system. The Greenland Flow Distortion Experiment (GFDex) is investigating the role of Greenland in defining the structure and predictability of both local and downstream weather systems through a program of aircraft-based observation and numerical modeling. The GFDex observational program is centered upon an aircraft-based field campaign in February and March 2007, at the dawn of the International Polar Year. Twelve missions were fl...


Journal of Climate | 2013

Multidecadal Mobility of the North Atlantic Oscillation

G. W. K. Moore; Ian A. Renfrew; Robert S. Pickart

AbstractThe North Atlantic Oscillation (NAO) is one of the most important modes of variability in the global climate system and is characterized by a meridional dipole in the sea level pressure field, with centers of action near Iceland and the Azores. It has a profound influence on the weather, climate, ecosystems, and economies of Europe, Greenland, eastern North America, and North Africa. It has been proposed that around 1980, there was an eastward secular shift in the NAO’s northern center of action that impacted sea ice export through Fram Strait. Independently, it has also been suggested that the location of its southern center of action is tied to the phase of the NAO. Both of these attributes of the NAO have been linked to anthropogenic climate change. Here the authors use both the one-point correlation map technique as well as empirical orthogonal function (EOF) analysis to show that the meridional dipole that is often seen in the sea level pressure field over the North Atlantic is not purely the...


Monthly Weather Review | 2001

A Numerical Study of an Extreme Cold-Air Outbreak over the Labrador Sea: Sea Ice, Air-Sea Interaction, and Development of Polar Lows

Mariusz Pagowski; G. W. K. Moore

Abstract In this paper, the ability of the MM5 mesoscale forecast model to simulate the air–sea interaction, boundary layer development, and mesoscale structure associated with a cold-air outbreak over the Labrador Sea is investigated. The case chosen was one for which research aircraft data and satellite imagery are available for validation. The default surface-layer parameterization included in the model is shown to grossly overestimate the magnitude of the air–sea interaction resulting in forecasts of boundary layer growth and mesoscale development that differ substantially from observations. It is also shown that a representation of the inhomogeneities in sea-ice cover results in a significant improvement in simulations of the air–sea interaction, boundary layer development, and mesoscale structure both within the marginal ice zone and downstream over the open ocean. Finally, the mesoscale cyclones or polar lows observed in the wake of the cold-air outbreak are shown to be coupled to the evolution of ...

Collaboration


Dive into the G. W. K. Moore's collaboration.

Top Co-Authors

Avatar

Robert S. Pickart

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Ian A. Renfrew

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

Michael A. Spall

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Daniel J. Torres

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Frank Bahr

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fiamma Straneo

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Jeremy T. Mathis

National Oceanic and Atmospheric Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge