Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fiamma Straneo is active.

Publication


Featured researches published by Fiamma Straneo.


Journal of Geophysical Research | 2016

Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans

Edward C. Carmack; Michiyo Yamamoto-Kawai; Thomas W. N. Haine; Sheldon Bacon; Bodil A. Bluhm; Camille Lique; Humfrey Melling; Igor V. Polyakov; Fiamma Straneo; Mary-Louise Timmermans; William J. Williams

The Arctic Ocean is a fundamental node in the global hydrological cycle and the oceans thermohaline circulation. We here assess the systems key functions and processes: (1) the delivery of fresh and low-salinity waters to the Arctic Ocean by river inflow, net precipitation, distillation during the freeze/thaw cycle, and Pacific Ocean inflows; (2) the disposition (e.g., sources, pathways, and storage) of freshwater components within the Arctic Ocean; and (3) the release and export of freshwater components into the bordering convective domains of the North Atlantic. We then examine physical, chemical, or biological processes which are influenced or constrained by the local quantities and geochemical qualities of freshwater; these include stratification and vertical mixing, ocean heat flux, nutrient supply, primary production, ocean acidification, and biogeochemical cycling. Internal to the Arctic the joint effects of sea ice decline and hydrological cycle intensification have strengthened coupling between the ocean and the atmosphere (e.g., wind and ice drift stresses, solar radiation, and heat and moisture exchange), the bordering drainage basins (e.g., river discharge, sediment transport, and erosion), and terrestrial ecosystems (e.g., Arctic greening, dissolved and particulate carbon loading, and altered phenology of biotic components). External to the Arctic freshwater export acts as both a constraint to and a necessary ingredient for deep convection in the bordering subarctic gyres and thus affects the global thermohaline circulation. Geochemical fingerprints attained within the Arctic Ocean are likewise exported into the neighboring subarctic systems and beyond. Finally, we discuss observed and modeled functions and changes in this system on seasonal, annual, and decadal time scales and discuss mechanisms that link the marine system to atmospheric, terrestrial, and cryospheric systems.


Journal of Climate | 2014

Strong Downslope Wind Events in Ammassalik, Southeast Greenland

Marilena Oltmanns; Fiamma Straneo; G. W. K. Moore; Sebastian H. Mernild

AbstractAmmassalik in southeast Greenland is known for strong wind events that can reach hurricane intensity and cause severe destruction in the local town. Yet, these winds and their impact on the nearby fjord and shelf region have not been studied in detail.Here, data from two meteorological stations and the European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) are used to identify and characterize these strong downslope wind events, which are especially pronounced at a major east Greenland fjord, Sermilik Fjord, within Ammassalik. Their local and regional characteristics, their dynamics and their impacts on the regional sea ice cover, and air–sea fluxes are described. Based on a composite of the events it is concluded that wind events last for approximately a day, and seven to eight events occur each winter. Downslope wind events are associated with a deep synoptic-scale cyclone between Iceland and Greenland. During the events, cold dry air is advected down the ice sheet....


Geophysical Research Letters | 2017

BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With Mass Conservation

Mathieu Morlighem; Christopher Williams; Eric Rignot; L. An; Jan Erik Arndt; Jonathan L. Bamber; Ginny A. Catania; Nolwenn Chauché; Julian A. Dowdeswell; Boris Dorschel; Ian Fenty; K. A. Hogan; Ian M. Howat; Alun Hubbard; Martin Jakobsson; Thomas Jordan; Kristian K. Kjeldsen; R. Millan; Larry A. Mayer; J. Mouginot; Brice Noël; C. O'Cofaigh; S. Palmer; Søren Rysgaard; Helene Seroussi; Martin J. Siegert; P. Slabon; Fiamma Straneo; M. R. van den Broeke; W. Weinrebe

Abstract Greenlands bed topography is a primary control on ice flow, grounding line migration, calving dynamics, and subglacial drainage. Moreover, fjord bathymetry regulates the penetration of warm Atlantic water (AW) that rapidly melts and undercuts Greenlands marine‐terminating glaciers. Here we present a new compilation of Greenland bed topography that assimilates seafloor bathymetry and ice thickness data through a mass conservation approach. A new 150 m horizontal resolution bed topography/bathymetric map of Greenland is constructed with seamless transitions at the ice/ocean interface, yielding major improvements over previous data sets, particularly in the marine‐terminating sectors of northwest and southeast Greenland. Our map reveals that the total sea level potential of the Greenland ice sheet is 7.42 ± 0.05 m, which is 7 cm greater than previous estimates. Furthermore, it explains recent calving front response of numerous outlet glaciers and reveals new pathways by which AW can access glaciers with marine‐based basins, thereby highlighting sectors of Greenland that are most vulnerable to future oceanic forcing.


Journal of Geophysical Research | 2014

Impact of periodic intermediary flows on submarine melting of a Greenland glacier

R. Sciascia; Claudia Cenedese; D. Nicolì; Patrick Heimbach; Fiamma Straneo

The submarine melting of a vertical glacier front, induced by an intermediary circulation forced by periodic density variations at the mouth of a fjord, is investigated using a nonhydrostatic ocean general circulation model and idealized laboratory experiments. The idealized configurations broadly match that of Sermilik Fjord, southeast Greenland, a largely two layers system characterized by strong seasonal variability of subglacial discharge. Consistent with observations, the numerical results suggest that the intermediary circulation is an effective mechanism for the advection of shelf anomalies inside the fjord. In the numerical simulations, the advection mechanism is a density intrusion with a velocity which is an order of magnitude larger than the velocities associated with a glacier-driven circulation. In summer, submarine melting is mostly influenced by the discharge of surface runoff at the base of the glacier and the intermediary circulation induces small changes in submarine melting. In winter, on the other hand, submarine melting depends only on the water properties and velocity distribution at the glacier front. Hence, the properties of the waters advected by the intermediary circulation to the glacier front are found to be the primary control of the submarine melting. When the density of the intrusion is intermediate between those found in the fjords two layers, there is a significant reduction in submarine melting. On the other hand, when the density is close to that of the bottom layer, only a slight reduction in submarine melting is observed. The numerical results compare favorably to idealized laboratory experiments with a similar setup.


Journal of Geophysical Research | 2014

Moored observations of synoptic and seasonal variability in the East Greenland Coastal Current

Benjamin E. Harden; Fiamma Straneo; David A. Sutherland

We present a year-round assessment of the hydrographic variability within the East Greenland Coastal Current on the Greenland shelf from five synoptic crossings and 4 years of moored hydrographic data. From the five synoptic sections the current is observed as a robust, surface intensified flow with a total volume transport of 0.66 ± 0.18 Sv and a freshwater transport of 42 ± 12 mSv. The moorings showed heretofore unobserved variability in the abundance of Polar and Atlantic water masses in the current on synoptic scales. This is exhibited as large vertical displacement of isotherms (often greater than 100 m). Seasonally, the current is hemmed into the coast during the fall by a full depth Atlantic Water layer that has penetrated onto the inner shelf. The Polar Water layer in the current then thickens through the winter and spring seasons increasing the freshwater content in the current; the timing implies that this is probably driven by the seasonally varying export of freshwater from the Arctic and not the local runoff from Greenland. The measured synoptic variability is enhanced during the winter and spring period due to a lower halocline and a concurrent enhancement in the along-coast wind speed. The local winds force much of the high-frequency variability in a manner consistent with downwelling, but variability distinct from downwelling is also visible.


Geophysical Research Letters | 2016

Effect of a sheared flow on iceberg motion and melting

A. FitzMaurice; Fiamma Straneo; Claudia Cenedese; Magdalena Andres

Icebergs account for approximately half the freshwater flux into the ocean from the Greenland and Antarctic ice sheets and play a major role in the distribution of meltwater into the ocean. Global climate models distribute this freshwater by parameterizing iceberg motion and melt, but these parameterizations are presently informed by limited observations. Here we present a record of speed and draft for 90 icebergs from Sermilik Fjord, southeastern Greenland, collected in conjunction with wind and ocean velocity data over an 8 month period. It is shown that icebergs subject to strongly sheared flows predominantly move with the vertical average of the ocean currents. If, as typical in iceberg parameterizations, only the surface ocean velocity is taken into account, iceberg speed and basal melt may have errors in excess of 60%. These results emphasize the need for parameterizations to consider ocean properties over the entire iceberg draft.


Journal of the Atmospheric Sciences | 2015

The Role of Wave Dynamics and Small-Scale Topography for Downslope Wind Events in Southeast Greenland

Marilena Oltmanns; Fiamma Straneo; Hyodae Seo; G. W. K. Moore

AbstractIn Ammassalik, in southeast Greenland, downslope winds can reach hurricane intensity and represent a hazard for the local population and environment. They advect cold air down the ice sheet and over the Irminger Sea, where they drive large ocean–atmosphere heat fluxes over an important ocean convection region. Earlier studies have found them to be associated with a strong katabatic acceleration over the steep coastal slopes, flow convergence inside the valley of Ammassalik, and—in one instance—mountain wave breaking. Yet, for the general occurrence of strong downslope wind events, the importance of mesoscale processes is largely unknown. Here, two wind events—one weak and one strong—are simulated with the atmospheric Weather Research and Forecasting (WRF) Model with different model and topography resolutions, ranging from 1.67 to 60 km. For both events, but especially for the strong one, it is found that lower resolutions underestimate the wind speed because they misrepresent the steepness of the ...


ieee/oes autonomous underwater vehicles | 2014

The WHOI Jetyak: An autonomous surface vehicle for oceanographic research in shallow or dangerous waters

Peter Kimball; John Bailey; Sarah B. Das; Rocky Geyer; Trevor Harrison; Clay Kunz; Kevin Manganini; Ken Mankoff; Katie Samuelson; Thomas Sayre-McCord; Fiamma Straneo; Peter Traykovski; Hanumant Singh

This paper illustrates the components, capabilities, and some characteristic applications of the Woods Hole Oceanographic Institution Jetyak - a small autonomous surface vehicle (ASV) designed for the collection of oceanographic data from shallow or dangerous waters. The Jetyak is the result of custom modifications to a Mokai jet-powered kayak, including an A-frame and sea chest for installation of instrumentation, servo-driven controls and an Ardupilot autopilot for autonomous operation, an onboard computer for instrument control and data logging, and radios for wireless operation and communications. With these modifications, the Jetyaks cost of replacement is less than


Geophysical Research Letters | 2017

Nonlinear response of iceberg side melting to ocean currents

A. FitzMaurice; Claudia Cenedese; Fiamma Straneo

15,000 (excluding the cost of instrumentation payload). The paper addresses the strengths and weaknesses of the Jetyak relative to piloted small boats and jetskis, autonomous underwater vehicles, and existing ASVs. Preliminary data are included from some shallow-water and dangerous Jetyak field campaigns in order to illustrate applications to which the Jetyak is well or uniquely suited.


Journal of Physical Oceanography | 2017

Seasonal Overturning of the Labrador Sea as Observed by Argo Floats

James Holte; Fiamma Straneo

Icebergs calving into Greenlandic Fjords frequently experience strongly sheared flows over their draft, but the impact of this flow past the iceberg is not fully captured by existing parameterizations. We present a series of novel laboratory experiments to determine the dependence of submarine melting along iceberg sides on a background flow. We show, for the first time, that two distinct regimes of melting exist depending on the flow magnitude and consequent behaviour of melt plumes (side-attached or side-detached), with correspondingly different meltwater spreading characteristics. When this velocity dependence is included in melt parameterizations, melt rates estimated for observed icebergs in the attached regime increase, consistent with observed iceberg submarine melt rates. We show that both attached and detached plume regimes are relevant to icebergs observed in a Greenland fjord. Further, depending on the regime, iceberg meltwater may either be confined to a surface layer or distributed over the iceberg draft.

Collaboration


Dive into the Fiamma Straneo's collaboration.

Top Co-Authors

Avatar

Claudia Cenedese

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marilena Oltmanns

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathaniel J. Wilson

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

P. St-Laurent

Virginia Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Patrick Heimbach

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge