G. Woan
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. Woan.
Classical and Quantum Gravity | 2002
B. Willke; P. Aufmuth; Carsten Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; S. Bose; G. Cagnoli; M. M. Casey; D. Churches; D. Clubley; Carlo Nicola Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. Davis; E. J. Elliffe; Carsten Fallnich; Andreas Freise; S. Gossler; A. Grant; H. Grote; Gerhard Heinzel; A. Heptonstall; M. Heurs; J. Hough; Keita Kawabe; Karsten Kötter; V. Leonhardt
The GEO 600 laser interferometer with 600 m armlength is part of a worldwide network of gravitational wave detectors. Due to the use of advanced technologies like multiple pendulum suspensions with a monolithic last stage and signal recycling, the anticipated sensitivity of GEO 600 is close to the initial sensitivity of detectors with several kilometres armlength. This paper describes the subsystems of GEO 600, the status of the detector by September 2001 and the plans towards the first science run.
Classical and Quantum Gravity | 2006
H. Lück; M. Hewitson; P. Ajith; B. Allen; P. Aufmuth; C. Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; Alexander Bunkowski; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; Y. Chen; D. Churches; T. Cokelaer; C. N. Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Franzen; A. Freise; I. Gholami; S. Goßler; A. Grant
Of all the large interferometric gravitational-wave detectors, the German/British project GEO600 is the only one which uses dual recycling. During the four weeks of the international S4 data-taking run it reached an instrumental duty cycle of 97% with a peak sensitivity of 7 × 10−22 Hz−1/2 at 1 kHz. This paper describes the status during S4 and improvements thereafter.
Physical Review D | 2005
R. J. Dupuis; G. Woan
We present a method of searching for, and parametrizing, signals from known radio pulsars in data from interferometric gravitational wave detectors. This method has been applied to data from the LIGO and GEO 600 detectors to set upper limits on the gravitational wave emission from several radio pulsars. Here we discuss the nature of the signal and the performance of the technique on simulated data. We show how to perform a coherent multiple detector analysis and give some insight into the covariance between the signal parameters.
Proceedings of SPIE | 2004
K. A. Strain; B. Allen; P. Aufmuth; Carsten Aulbert; S. Babak; R. Balasubramanian; B. Barr; Steven J. Berukoff; Alexander Bunkowski; G. Cagnoli; C. A. Cantley; M. M. Casey; S. Chelkowski; D. Churches; T. Cokelaer; Carlo Nicola Colacino; D. R. M. Crooks; Curt Cutler; Karsten Danzmann; R. Davies; R. J. Dupuis; E. J. Elliffe; Carsten Fallnich; A. Franzen; Andreas Freise; S. Goßler; A. Grant; H. Grote; S. Grunewald; J. Harms
The GEO 600 laser interferometer with 600m armlength is part of a worldwide network of gravitational wave detectors. GEO 600 is unique in having advanced multiple pendulum suspensions with a monolithic last stage and in employing a signal recycled optical design. This paper describes the recent commissioning of the interferometer and its operation in signal recycled mode.
Classical and Quantum Gravity | 2008
K. Wette; B. J. Owen; B. Allen; M. Ashley; J. Betzwieser; N. Christensen; T. D. Creighton; V. Dergachev; I. Gholami; E. Goetz; R. Gustafson; D. Hammer; D. I. Jones; Badri Krishnan; M. Landry; B. Machenschalk; D. E. McClelland; G. Mendell; C. Messenger; M. A. Papa; P. Patel; M. Pitkin; H. J. Pletsch; R. Prix; K. Riles; L. Sancho De La Jordana; S. M. Scott; A. M. Sintes; M. Trias; James Whelan
We describe a search underway for periodic gravitational waves from the central compact object in the supernova remnant Cassiopeia A. The object is the youngest likely neutron star in the Galaxy. Its position is well known, but the object does not pulse in any electromagnetic radiation band and thus presents a challenge in searching the parameter space of frequency and frequency derivatives. We estimate that a fully coherent search can, with a reasonable amount of time on a computing cluster, achieve a sensitivity at which it is theoretically possible (though not likely) to observe a signal even with the initial LIGO noise spectrum. Cassiopeia A is only the second object after the Crab pulsar for which this is true. The search method described here can also obtain interesting results for similar objects with current LIGO sensitivity.
IEEE Transactions on Antennas and Propagation | 2011
Tobia Carozzi; G. Woan
Many modern radio applications, such as astronomy and remote sensing, require high-precision polarimetry. These applications put exacting demands on radio polarimeters (antenna systems that can measure the state of polarization of radio sources), and in order to assess their polarimetric performance, a figure of merit (FoM) would be desirable. Unfortunately, we find that the parameter commonly used for this purpose, the cross-polarization ratio, is not suitable as a polarimetry FoM unless it is given in an appropriate coordinate system. This is because although the cross-polarization ratio is relevant for raw, uncalibrated polarimetry, in general it is not relevant to the quality of the polarimetry after polarimetric calibration. However, a cross-polarization ratio can be constructed from invariants of the Jones matrix (the matrix that describes the polarimetric response of a polarimeter) that quantifies polarimetric performance even after calibration. We call this cross-polarization ratio the intrinsic cross-polarization ratio (IXR) and conclude that it is a fundamental FoM for polarimeters. We then extend the IXR concept from the Jones calculus to the Mueller calculus and also to interferometers, and we give numerical examples of these parameters applied to the Parkes radio telescope, the Westerbork synthesis radio telescope, and the Effelsberg telescope.
Monthly Notices of the Royal Astronomical Society | 2009
Tobia Carozzi; G. Woan
We derive a generalized van Cittert-Zernike (vC-Z) theorem for radio astronomy that is valid for partially polarized sources over an arbitrarily wide field of view (FoV). The classical vC-Z theorem is the theoretical foundation of radio astronomical interferometry, and its application is the basis of interferometric imaging. Existing generalized vC-Z theorems in radio astronomy assume, however, either paraxiality (narrow FoV) or scalar (unpolarized) sources. Our theorem uses neither of these assumptions, which are seldom fulfiled in practice in radio astronomy, and treats the full electromagnetic field. To handle wide, partially polarized fields, we extend the two-dimensional (2D) electric field (Jones vector) formalism of the standard ‘Measurement Equation’ (ME) of radio astronomical interferometry to the full three-dimensional (3D) formalism developed in optical coherence theory. The resulting vC-Z theorem enables full-sky imaging in a single telescope pointing, and imaging based not only on standard dual-polarized interferometers (that measure 2D electric fields) but also electric tripoles and electromagnetic vector-sensor interferometers. We show that the standard 2D ME is easily obtained from our formalism in the case of dual-polarized antenna element interferometers. We also exploit an extended 2D ME to determine that dual-polarized interferometers can have polarimetric aberrations at the edges of a wide FoV. Our vC-Z theorem is particularly relevant to proposed, and recently developed, wide FoV interferometers such as Low Frequency Array (LOFAR) and Square Kilometer Array (SKA), for which direction-dependent effects will be important.
Physical Review D | 2005
Richard Umstätter; N. Christensen; M. Hendry; Renate Meyer; Vimal Simha; J. Veitch; Sarah Vigeland; G. Woan
One of the greatest data analysis challenges for the Laser Interferometer Space Antenna (LISA) is the need to account for a large number of gravitational wave signals from compact binary systems expected to be present in the data. We introduce the basis of a Bayesian method that we believe can address this challenge and demonstrate its effectiveness on a simplified problem involving 100 synthetic sinusoidal signals in noise. We use a reversible jump Markov chain Monte Carlo technique to infer simultaneously the number of signals present, the parameters of each identified signal, and the noise level. Our approach therefore tackles the detection and parameter estimation problems simultaneously, without the need to evaluate formal model selection criteria, such as the Akaike Information Criterion or explicit Bayes factors. The method does not require a stopping criterion to determine the number of signals and produces results which compare very favorably with classical spectral techniques.
Geophysical Research Letters | 1995
P. P. Hick; Bernard V. Jackson; S. Rappoport; G. Woan; Gary L. Slater; K. T. Strong; Yutaka Uchida
Interplanetary scintillation measurements of the disturbance factor, g, from October 1991 to October 1992 are used to construct synoptic Carrington maps. These maps, which show the structure of the quiet solar wind, are compared with X-ray Carrington maps from the Yohkoh SXT instrument. For the period studied the global structure outlined by (weakly) enhanced g-values apparent in the IPS maps tends to match the active regions (as shown in the X-ray maps) significantly better than the heliospheric current sheet. Contrary to traditional opinion, which views active regions as magnetically closed structures that do not have any significant impact on the solar wind flow, our results suggest that density fluctuations in the solar wind are significantly enhanced over active regions. These results support the suggestion by Uchida et al. (1992), based on Yohkoh observations of expanding active regions, that active regions play a role in feeding mass into the quiet solar wind.
Classical and Quantum Gravity | 2008
A. C. Searle; Patrick J. Sutton; Massimo Tinto; G. Woan
We develop a Bayesian treatment of the problem of detecting unmodelled gravitational wave bursts using the new global network of interferometric detectors. We also compare this Bayesian treatment with existing coherent methods, and demonstrate that the existing methods make implicit assumptions on the distribution of signals that make them sub-optimal for realistic signal populations.