Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where G. Zhang is active.

Publication


Featured researches published by G. Zhang.


Journal of Pharmacology and Experimental Therapeutics | 2009

Cellular Inhibition of Checkpoint Kinase 2 (Chk2) and Potentiation of Camptothecins and Radiation by the Novel Chk2 Inhibitor PV1019 [7-Nitro-1H-indole-2-carboxylic acid {4-[1-(guanidinohydrazone)-ethyl]-phenyl}-amide]

Andrew Jobson; George T. Lountos; Philip L. Lorenzi; Jenny Llamas; John Connelly; David Cerna; Joseph E. Tropea; Akikazu Onda; Gabriele Zoppoli; G. Zhang; Natasha J. Caplen; John H. Cardellina; Stephen S. Yoo; Anne Monks; Christopher Self; David S. Waugh; Robert H. Shoemaker; Yves Pommier

Chk2 is a checkpoint kinase involved in the ataxia telangiectasia mutated pathway, which is activated by genomic instability and DNA damage, leading to either cell death (apoptosis) or cell cycle arrest. Chk2 provides an unexplored therapeutic target against cancer cells. We recently reported 4,4′-diacetyldiphenylurea-bis(guanylhydrazone) (NSC 109555) as a novel chemotype Chk2 inhibitor. We have now synthesized a derivative of NSC 109555, PV1019 (NSC 744039) [7-nitro-1H-indole-2-carboxylic acid {4-[1-(guanidinohydrazone)-ethyl]-phenyl}-amide], which is a selective submicromolar inhibitor of Chk2 in vitro. The cocrystal structure of PV1019 bound in the ATP binding pocket of Chk2 confirmed enzymatic/biochemical observations that PV1019 acts as a competitive inhibitor of Chk2 with respect to ATP. PV1019 was found to inhibit Chk2 in cells. It inhibits Chk2 autophosphorylation (which represents the cellular kinase activation of Chk2), Cdc25C phosphorylation, and HDMX degradation in response to DNA damage. PV1019 also protects normal mouse thymocytes against ionizing radiation-induced apoptosis, and it shows synergistic antiproliferative activity with topotecan, camptothecin, and radiation in human tumor cell lines. We also show that PV1019 and Chk2 small interfering RNAs can exert antiproliferative activity themselves in the cancer cells with high Chk2 expression in the NCI-60 screen. These data indicate that PV1019 is a potent and selective inhibitor of Chk2 with chemotherapeutic and radiosensitization potential.


Ultramicroscopy | 2009

Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: Implications for tomography of thick biological sections

Alioscka A. Sousa; Martin F. Hohmann-Marriott; G. Zhang; Richard D. Leapman

A Monte Carlo electron-trajectory calculation has been implemented to assess the optimal detector configuration for scanning transmission electron microscopy (STEM) tomography of thick biological sections. By modeling specimens containing 2 and 3 at% osmium in a carbon matrix, it was found that for 1-microm-thick samples the bright-field (BF) and annular dark-field (ADF) signals give similar contrast and signal-to-noise ratio provided the ADF inner angle and BF outer angle are chosen optimally. Spatial resolution in STEM imaging of thick sections is compromised by multiple elastic scattering which results in a spread of scattering angles and thus a spread in lateral distances of the electrons leaving the bottom surface. However, the simulations reveal that a large fraction of these multiply scattered electrons are excluded from the BF detector, which results in higher spatial resolution in BF than in high-angle ADF images for objects situated towards the bottom of the sample. The calculations imply that STEM electron tomography of thick sections should be performed using a BF rather than an ADF detector. This advantage was verified by recording simultaneous BF and high-angle ADF STEM tomographic tilt series from a stained 600-nm-thick section of C. elegans. It was found that loss of spatial resolution occurred markedly at the bottom surface of the specimen in the ADF STEM but significantly less in the BF STEM tomographic reconstruction. Our results indicate that it might be feasible to use BF STEM tomography to determine the 3D structure of whole eukaryotic microorganisms prepared by freeze-substitution, embedding, and sectioning.


Journal of Structural Biology | 2008

Determination of quantitative distributions of heavy-metal stain in biological specimens by annular dark-field STEM

Alioscka A. Sousa; Martin F. Hohmann-Marriott; Maria A. Aronova; G. Zhang; Richard D. Leapman

It is shown that dark-field images collected in the scanning transmission electron microscope (STEM) at two different camera lengths yield quantitative distributions of both the heavy and light atoms in a stained biological specimen. Quantitative analysis of the paired STEM images requires knowledge of the elastic scattering cross sections, which are calculated from the NIST elastic scattering cross section database. The results reveal quantitative information about the distribution of fixative and stain within the biological matrix, and provide a basis for assessing detection limits for heavy-metal clusters used to label intracellular proteins. In sectioned cells that have been stained only with osmium tetroxide, we find an average of 1.2+/-0.1 Os atom per nm(3), corresponding to an atomic ratio of Os:C atoms of approximately 0.02, which indicates that small heavy atom clusters of Undecagold and Nanogold can be detected in lightly stained specimens.


Journal of Structural Biology | 2015

Quantitative analysis of mouse pancreatic islet architecture by serial block-face SEM

Charlotte R. Pfeifer; Andre Shomorony; Maria A. Aronova; G. Zhang; Tao Cai; Huanyu Xu; Abner Louis Notkins; Richard D. Leapman

We have applied serial block-face scanning electron microscopy (SBF-SEM) to measure parameters that describe the architecture of pancreatic islets of Langerhans, microscopic endocrine organs that secrete insulin and glucagon for control of blood glucose. By analyzing entire mouse islets, we show that it is possible to determine (1) the distributions of alpha and beta cells, (2) the organization of blood vessels and pericapillary spaces, and (3) the ultrastructure of the individual secretory cells. Our results show that the average volume of a beta cell is nearly twice that of an alpha cell, and the total mitochondrial volume is about four times larger. In contrast, nuclear volumes in the two cell types are found to be approximately equal. Although the cores of alpha and beta secretory granules have similar diameters, the beta granules have prominent halos resulting in overall diameters that are twice those of alpha granules. Visualization of the blood vessels revealed that every secretory cell in the islet is in contact with the pericapillary space, with an average contact area of 9±5% of the cell surface area. Our data show that consistent results can be obtained by analyzing small numbers of islets. Due to the complicated architecture of pancreatic islets, such precision cannot easily be achieved by using TEM of thin sections.


Journal of Structural Biology | 2011

Structural characterization of inhibitor complexes with checkpoint kinase 2 (Chk2), a drug target for cancer therapy

George T. Lountos; Andrew Jobson; Joseph E. Tropea; Christopher Self; G. Zhang; Yves Pommier; Robert H. Shoemaker; David S. Waugh

Chk2 (checkpoint kinase 2) is a serine/threonine kinase that participates in a series of signaling networks responsible for maintaining genomic integrity and responding to DNA damage. The development of selective Chk2 inhibitors has recently attracted much interest as a means of sensitizing cancer cells to current DNA-damaging agents used in the treatment of cancer. Additionally, selective Chk2 inhibitors may reduce p53-mediated apoptosis in normal tissues, thereby helping to mitigate adverse side effects from chemotherapy and radiation. Thus far, relatively few selective inhibitors of Chk2 have been described and none have yet progressed into clinical trials. Here, we report crystal structures of the catalytic domain of Chk2 in complex with a novel series of potent and selective small molecule inhibitors. These compounds exhibit nanomolar potencies and are selective for Chk2 over Chk1. The structures reported here elucidate the binding modes of these inhibitors to Chk2 and provide information that can be exploited for the structure-assisted design of novel chemotherapeutics.


Journal of Microscopy | 2015

Combining quantitative 2D and 3D image analysis in the serial block face SEM: application to secretory organelles of pancreatic islet cells

Andre Shomorony; Charlotte R. Pfeifer; Maria A. Aronova; G. Zhang; Tao Cai; Huanyu Xu; Abner Louis Notkins; Richard D. Leapman

A combination of two‐dimensional (2D) and three‐dimensional (3D) analyses of tissue volume ultrastructure acquired by serial block face scanning electron microscopy can greatly shorten the time required to obtain quantitative information from big data sets that contain many billions of voxels. Thus, to analyse the number of organelles of a specific type, or the total volume enclosed by a population of organelles within a cell, it is possible to estimate the number density or volume fraction of that organelle using a stereological approach to analyse randomly selected 2D block face views through the cells, and to combine such estimates with precise measurement of 3D cell volumes by delineating the plasma membrane in successive block face images. The validity of such an approach can be easily tested since the entire 3D tissue volume is available in the serial block face scanning electron microscopy data set. We have applied this hybrid 3D/2D technique to determine the number of secretory granules in the endocrine α and β cells of mouse pancreatic islets of Langerhans, and have been able to estimate the total insulin content of a β cell.


Journal of Microscopy | 2010

Limitations of beam damage in electron spectroscopic tomography of embedded cells.

Maria A. Aronova; Alioscka A. Sousa; G. Zhang; Richard D. Leapman

Elemental mapping in the energy filtering transmission electron microscope (EFTEM) can be extended into three dimensions (3D) by acquiring a series of two‐dimensional (2D) core‐edge images from a specimen oriented over a range of tilt angles, and then reconstructing the volume using tomographic methods. EFTEM has been applied to imaging the distribution of biological molecules in 2D, e.g. nucleic acid and protein, in sections of plastic‐embedded cells, but no systematic study has been undertaken to assess the extent to which beam damage limits the available information in 3D. To address this question, 2D elemental maps of phosphorus and nitrogen were acquired from unstained sections of plastic‐embedded isolated mouse thymocytes. The variation in elemental composition, residual specimen mass and changes in the specimen morphology were measured as a function of electron dose. Whereas 40% of the total specimen mass was lost at doses above 106 e−/nm2, no significant loss of phosphorus or nitrogen was observed for doses as high as 108 e−/nm2. The oxygen content decreased from 25 ± 2 to 9 ± 2 atomic percent at an electron dose of 104 e−/nm2, which accounted for a major component of the total mass loss. The specimen thickness decreased by 50% after a dose of 108 e−/nm2, and a lateral shrinkage of 9.5 ± 2.0% occurred from 2 × 104 to 108 e−/nm2. At doses above 107 e−/nm2, damage could be observed in the bright field as well in the core edge images, which is attributed to further loss of oxygen and carbon atoms. Despite these artefacts, electron tomograms obtained from high‐pressure frozen and freeze‐substituted sections of C. elegans showed that it is feasible to obtain useful 3D phosphorus and nitrogen maps, and thus to reveal quantitative information about the subcellular distributions of nucleic acids and proteins.


FEBS Letters | 2011

X-Ray Structures of Checkpoint Kinase 2 in Complex with Inhibitors that Target its Gatekeeper-Dependent Hydrophobic Pocket.

George T. Lountos; Andrew Jobson; Joseph E. Tropea; Christopher Self; G. Zhang; Yves Pommier; Robert H. Shoemaker; David S. Waugh

The serine/threonine checkpoint kinase 2 (Chk2) is an attractive molecular target for the development of small molecule inhibitors to treat cancer. Here, we report the rational design of Chk2 inhibitors that target the gatekeeper‐dependent hydrophobic pocket located behind the adenine‐binding region of the ATP‐binding site. These compounds exhibit IC50 values in the low nanomolar range and are highly selective for Chk2 over Chk1. X‐ray crystallography was used to determine the structures of the inhibitors in complex with the catalytic kinase domain of Chk2 to verify their modes of binding.


Journal of Structural Biology | 2008

Reprint of “Three-dimensional elemental mapping of phosphorus by quantitative electron spectroscopic tomography (QuEST)” [J. Struct. Biol. 160 (2007) 35–48] ☆

Maria A. Aronova; Y.C. Kim; R. Harmon; Alioscka A. Sousa; G. Zhang; Richard D. Leapman

We describe the development of quantitative electron spectroscopic tomography (QuEST), which provides 3-D distributions of elements on a nanometer scale. Specifically, it is shown that QuEST can be applied to map the distribution of phosphorus in unstained sections of embedded cells. A series of 2-D elemental maps is derived from images recorded in the energy filtering transmission electron microscope for a range of specimen tilt angles. A quantitative 3-D elemental distribution is then reconstructed from the elemental tilt series. To obtain accurate quantitative elemental distributions it is necessary to correct for plural inelastic scattering at the phosphorus L(2,3) edge, which is achieved by acquiring unfiltered and zero-loss images at each tilt angle. The data are acquired automatically using a cross correlation technique to correct for specimen drift and focus change between successive tilt angles. An algorithm based on the simultaneous iterative reconstruction technique (SIRT) is implemented to obtain quantitative information about the number of phosphorus atoms associated with each voxel in the reconstructed volume. We assess the accuracy of QuEST by determining the phosphorus content of ribosomes in a eukaryotic cell, and then apply it to estimate the density of nucleic acid in chromatin of the cells nucleus. From our experimental data, we estimate that the sensitivity for detecting phosphorus is 20 atoms in a 2.7 nm-sized voxel.


Journal of Pharmacology and Experimental Therapeutics | 2009

Cellular Inhibition of Chk2 Kinase and Potentiation of Camptothecins and Radiation by the Novel Chk2 Inhibitor Pv1019.

Andrew Jobson; George T. Lountos; Philip L. Lorenzi; Jenny Llamas; John Connelly; David Cerna; Joseph E. Tropea; Akikazu Onda; Gabriele Zoppoli; G. Zhang; Natasha J. Caplen; John H. Cardellina; Stephen S. Yoo; Anne Monks; Christopher Self; David S. Waugh; Robert H. Shoemaker; Yves Pommier

Chk2 is a checkpoint kinase involved in the ataxia telangiectasia mutated pathway, which is activated by genomic instability and DNA damage, leading to either cell death (apoptosis) or cell cycle arrest. Chk2 provides an unexplored therapeutic target against cancer cells. We recently reported 4,4′-diacetyldiphenylurea-bis(guanylhydrazone) (NSC 109555) as a novel chemotype Chk2 inhibitor. We have now synthesized a derivative of NSC 109555, PV1019 (NSC 744039) [7-nitro-1H-indole-2-carboxylic acid {4-[1-(guanidinohydrazone)-ethyl]-phenyl}-amide], which is a selective submicromolar inhibitor of Chk2 in vitro. The cocrystal structure of PV1019 bound in the ATP binding pocket of Chk2 confirmed enzymatic/biochemical observations that PV1019 acts as a competitive inhibitor of Chk2 with respect to ATP. PV1019 was found to inhibit Chk2 in cells. It inhibits Chk2 autophosphorylation (which represents the cellular kinase activation of Chk2), Cdc25C phosphorylation, and HDMX degradation in response to DNA damage. PV1019 also protects normal mouse thymocytes against ionizing radiation-induced apoptosis, and it shows synergistic antiproliferative activity with topotecan, camptothecin, and radiation in human tumor cell lines. We also show that PV1019 and Chk2 small interfering RNAs can exert antiproliferative activity themselves in the cancer cells with high Chk2 expression in the NCI-60 screen. These data indicate that PV1019 is a potent and selective inhibitor of Chk2 with chemotherapeutic and radiosensitization potential.

Collaboration


Dive into the G. Zhang's collaboration.

Top Co-Authors

Avatar

Richard D. Leapman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Maria A. Aronova

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alioscka A. Sousa

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David S. Waugh

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

George T. Lountos

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert H. Shoemaker

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Y.C. Kim

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yves Pommier

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Andrew Jobson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Christopher Self

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge