Gabi Laske
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gabi Laske.
Journal of Geophysical Research | 1998
Walter D. Mooney; Gabi Laske; T. Guy Masters
We present a new global model for the Earths crust based on seismic refraction data published in the period 1948-1995 and a detailed compilation of ice and sediment thickness. An extensive compilation of seismic refraction measurements has been used to determine the crustal structure on continents and their margins. Oceanic crust is modeled with both a standard model for normal oceanic crust, and variants for nonstandard regions, such as oceanic plateaus. Our model (CRUST 5.1) consists of 2592 5°x5° tiles in which the crust and uppermost mantle are described by eight layers: (1) ice, (2) water, (3) soft sediments, (4) hard sediments, (5) crystalline upper, (6) middle, (7) lower crust, and (8) uppermost mantle. Topography and bathymetry are adopted from a standard database (ETOPO-5). Compressional wave velocity in each layer is based on field measurements, and shear wave velocity and density are estimated using recently published empirical V p -V s and V p -density relationships. The crustal model differs from previous models in that (1) the thickness and seismic/density structure of sedimentary basins is accounted for more completely, (2) the velocity structure of unmeasured regions is estimated using statistical averages that are based on a significantly larger database of crustal structure, (3) the compressional wave, shear wave, and density structure have been explicitly specified using newly available constraints from field and laboratory studies. Thus this global crustal model is based on substantially more data than previous models and differs from them in many important respects. A new map of the thickness of the Earths crust is presented, and we illustrate the application of this model by using it to provide the crustal correction for surface wave phase velocity maps. Love waves at 40 s are dominantly sensitive to crustal structure, and there is a very close correspondence between observed phase velocities at this period and those predicted by CRUST 5.1. We find that the application of crustal corrections to long-period (167 s) Rayleigh waves significantly increases the variance in the phase velocity maps and strengthens the upper mantle velocity anomalies beneath stable continental regions. A simple calculation of crustal isostacy indicates significant lateral variations in upper mantle density. The model CRUST 5.1 provides a complete description of the physical properties of the Earths crust at a scale of 5° x 5° and can be used for a wide range of seismological and nonseismological problems.
Philosophical Transactions of the Royal Society A | 1996
Guy Masters; Stuart Johnson; Gabi Laske; Harold Bolton; J. H. Davies
We present a new model of shear velocity structure in the mantle which is designed to fit data-sets of absolute and differential body-wave travel times, surface-wave phase velocities over a broad range of frequencies, and structure coefficients of modes of free oscillation. The model is parametrized laterally by spherical harmonics (truncated at degree 16) and by 30 natural cubic B-splines in radius. Our best model features large-amplitude structure (up to ±6% anomalies in shear velocity) in the topmost 400 km of the mantle and in the lowermost 500 km (up to ±2.5%) with most of the power in the low harmonics (l < 6). The middle of the mantle is characterized by low-amplitude anomalies with a much whiter spectrum. Our models generally show no distinctive changes in structure (in either shape or amplitude) at the 660 km discontinuity supporting the idea that an endothermic phase transition is not a barrier to large-scale flow in the mantle.
Nature | 2013
Peter Brown; Jelle Assink; L. Astiz; R. Blaauw; Mark B. Boslough; Jiří Borovička; Nicolas Brachet; David Brown; M. D. Campbell-Brown; Lars Ceranna; W. Cooke; C. de Groot-Hedlin; Douglas P. Drob; Wayne N. Edwards; L. G. Evers; Milton A. Garces; J. Gill; Michael A. H. Hedlin; A. Kingery; Gabi Laske; A. Le Pichon; Pierrick Mialle; D. E. Moser; A. Saffer; Elizabeth A. Silber; Pieter Smets; R. E. Spalding; Pavel Spurný; E. Tagliaferri; D. Uren
Most large (over a kilometre in diameter) near-Earth asteroids are now known, but recognition that airbursts (or fireballs resulting from nuclear-weapon-sized detonations of meteoroids in the atmosphere) have the potential to do greater damage than previously thought has shifted an increasing portion of the residual impact risk (the risk of impact from an unknown object) to smaller objects. Above the threshold size of impactor at which the atmosphere absorbs sufficient energy to prevent a ground impact, most of the damage is thought to be caused by the airburst shock wave, but owing to lack of observations this is uncertain. Here we report an analysis of the damage from the airburst of an asteroid about 19 metres (17 to 20 metres) in diameter southeast of Chelyabinsk, Russia, on 15 February 2013, estimated to have an energy equivalent of approximately 500 (±100) kilotons of trinitrotoluene (TNT, where 1 kiloton of TNT = 4.185×1012 joules). We show that a widely referenced technique of estimating airburst damage does not reproduce the observations, and that the mathematical relations based on the effects of nuclear weapons—almost always used with this technique—overestimate blast damage. This suggests that earlier damage estimates near the threshold impactor size are too high. We performed a global survey of airbursts of a kiloton or more (including Chelyabinsk), and find that the number of impactors with diameters of tens of metres may be an order of magnitude higher than estimates based on other techniques. This suggests a non-equilibrium (if the population were in a long-term collisional steady state the size-frequency distribution would either follow a single power law or there must be a size-dependent bias in other surveys) in the near-Earth asteroid population for objects 10 to 50 metres in diameter, and shifts more of the residual impact risk to these sizes.
Science | 2009
Cecily J. Wolfe; Sean C. Solomon; Gabi Laske; John A. Collins; Robert S. Detrick; John A. Orcutt; David Bercovici; Erik H. Hauri
Earths Plume Plumbing Volcanic hot spots, such as the one that continues to build the Hawaiian Islands, are thought to form by one of two mechanisms: Either mantle plumes bring hot, buoyant material to the surface from deep within the Earths interior, or extensive processing of the upper mantle by plate tectonics causes localized volcanism in stressed or heterogeneous crust. Wolfe et al. (p. 1388; see the cover; see the news story by Kerr) used an extensive array of ocean-bottom and land-based seismometers to reveal the structure of the mantle beneath Hawaii. These high-resolution images reveal a high-temperature plume originating from the lower mantle. Extensive seismological data support a mantle plume origin for the Hawaiian volcanic hot spot. Defining the mantle structure that lies beneath hot spots is important for revealing their depth of origin. Three-dimensional images of shear-wave velocity beneath the Hawaiian Islands, obtained from a network of sea-floor and land seismometers, show an upper-mantle low-velocity anomaly that is elongated in the direction of the island chain and surrounded by a parabola-shaped high-velocity anomaly. Low velocities continue downward to the mantle transition zone between 410 and 660 kilometers depth, a result that is in agreement with prior observations of transition-zone thinning. The inclusion of SKS observations extends the resolution downward to a depth of 1500 kilometers and reveals a several-hundred-kilometer-wide region of low velocities beneath and southeast of Hawaii. These images suggest that the Hawaiian hot spot is the result of an upwelling high-temperature plume from the lower mantle.
Journal of Geophysical Research | 1996
Gabi Laske; Guy Masters
Global phase velocity maps of long-period surface waves are an essential ingredient in modeling 3-D shear wave velocity and are capable of particularly good lateral resolution of upper mantle structure. Unfortunately, even recently derived maps disagree for harmonic degrees greater than about 6 so that further improvement is required. The resolution can be dramatically improved by adding both amplitude and polarization data to the inversion process. Both amplitude and polarization depend on the lateral gradients of phase velocity and hence constrain the short-wavelength structure of the resulting models. Amplitude, polarization, and phase are readily determined for each arriving wave packet using multitaper techniques and can be interpreted using linear perturbation theory. The size of our phase and polarization data sets obtained from seismograms of the global seismic broadband networks GEOSCOPE, IDA/IRIS (International Deployment of Accelerometers/Incorporate Research Institutions for Seismology) and IRIS/USGS (U.S. Geological Survey) justifies inversion for phase velocity expanded in spherical harmonics up to l = 24. While the phase data between 3 and 15 mHz do not require structure beyond about l = 8, small-amplitude structure of harmonic degree greater than 8 is needed to fit the polarization data. Checkerboard tests show that the resolution of phase velocity is greatly improved when polarization data are added to the inversion. Since amplitude data also depend on 3-D anelastic structure of the mantle, these data need a more comprehensive interpretation, and we cannot expect to fit them with a purely elastic model. However, in this paper we show that a good fraction of the amplitude signal is consistent with our phase velocity maps and that it is possible to obtain maps which simultaneously explain both amplitude and polarization data.
Eos, Transactions American Geophysical Union | 2004
Rhett Butler; T. S. Lay; Kenneth C. Creager; Paul Earl; Karen M. Fischer; Jim Gaherty; Gabi Laske; Bill Leith; Jeffrey Park; Mike Ritzwolle; Jeroen Tromp; Lianxing Wen
This year, the Global Seismographic Network (GSN) surpassed its 128-station design goal for uniform worldwide coverage of the Earth. A total of 136 GSN stations are now sited from the South Pole to Siberia, and from the Amazon Basin to the sea floor of the northeast Pacific Ocean—in cooperation with over 100 host organizations and seismic networks in 59 countries worldwide (Figure 1). Established in 1986 by the Incorporated Research Institutions for Seismology (IRIS) to replace the obsolete, analog Worldwide Standardized Seismograph Network (WWSSN),the GSN continues a tradition in global seismology that dates back more than a century to the network of Milne seismographs that initially spanned the globe. The GSN is a permanent network of state-of-the-art seismological and geophysical sensors connected by available telecommunications to serve as a multi-use scientific facility and societal resource for scientific research, environmental monitoring, and education for our national and international community.
Journal of Geophysical Research | 2014
Michael E. Pasyanos; T. Guy Masters; Gabi Laske; Zhitu Ma
Abstract : The compilation of extremely large global datasets of group velocity for Rayleigh and Love waves from 10mHz to 40mHz have completed using a cluster analysis technique. The method has been extended to measure phase velocity to complement the group velocity with global data sets of longer period phase data that help to constrain deep lithosphere properties. To model these data, a starting model for the crust at a nominal resolution of 1 degree is required. This has been developed by constructing a map of crustal thickness using data from receiver function and active source experiments where available, and by using CRUST2.0 where other constraints are not available. Particular care has been taken to make sure that the locations of sharp changes in crustal thickness are accurately represented. This map is then used as a template to extend CRUST2.0 to 1 degree nominal resolution and to develop starting maps of all crustal properties. The data is being modeled using two techniques. The first is a linearized inversion about the 3D crustal starting model. Note that it is important to use local eigenfunctions to compute Frechet derivatives due to the extreme variations in crustal structure. Another technique uses a targeted grid search method.
Nature | 1999
Gabi Laske; Guy Masters
Differential rotation of the Earths inner core has been inferred by several seismic ‘body-wave’ studies which indicate that the inner core is rotating at a rate between 0.2° and 3° per year faster than the Earths crust and mantle. The wide range in inferred rotation rate is thought to be caused by the sensitivity of body-wave studies to local complexities in inner-core structure. Free-oscillation ‘splitting functions’, on the other hand, are insensitive to local structure and therefore have the potential to estimate differential rotation more accurately. A previous free-oscillation study, however, was equivocal in its conclusions because of the relatively poor quality and coverage of the long-period digital data available 20 years ago. Here we use a method for analysing free oscillations which is insensitive to earthquake source, location and mechanism to constrain this differential rotation. We find that inner-core differential rotation is essentially zero over the past 20 years (to within ±0.2° per year), implying that the inner core is probably gravitationally locked to the Earths mantle.
Journal of Geophysical Research | 2011
Yue Tian; Ying Zhou; Karin Sigloch; Guust Nolet; Gabi Laske
[1] We simultaneously invert for the velocity and attenuation structure of the North American mantle from a mixed data set: SH wave traveltime and amplitude anomalies, SS wave differential traveltime anomalies, and Love wave fundamental mode phase delays. All data are measured for multiple frequency bands, and finite frequency sensitivity kernels are used to explain the observations. In the resulting SH velocity model, a lower mantle plume is observed to originate at about 1500 km depth beneath the Yellowstone area, tilting about 40° from vertical. The plume rises up through a gap in the subducting Farallon slab. The SH velocity model confirms high‐level segmentation of the Farallon slab, which was observed in the recent P velocity model. Attenuation structure is resolvable in the upper mantle and transition zone; in estimating it, we correct for focusing. High‐correlation coefficients between dlnVS and dlnQS under the central and eastern United States suggest one main physical source, most likely temperature. The smaller correlation coefficients and larger slopes of the dlnQS − dlnVS relationship under the western United States suggest an influence of nonthermal factors such as the existence of water and partial melt. Finally, we analyze the influence of the different components of our data set. The addition of Love wave phase delays helps to improve the resolution of both velocity and attenuation, and the effect is noticeable even in the lower mantle.
Reviews of Geophysics | 2009
Michael Weber; K. Abu-Ayyash; A. Abueladas; Amotz Agnon; Z. Alasonati‐Tašárová; H. Al‐Zubi; A. Babeyko; Yuval Bartov; K. Bauer; Michael Becken; Paul A. Bedrosian; Zvi Ben-Avraham; Günter Bock; M. Bohnhoff; J. Bribach; P. Dulski; Jörg Ebbing; Radwan J. El-Kelani; A. Förster; H.-J. Förster; U. Frieslander; Zvi Garfunkel; H. J. Goetze; V. Haak; Christian Haberland; M. Hassouneh; Stefan L. Helwig; A. Hofstetter; A. Hoffmann‐Rothe; K.-H. Jäckel
Fault zones are the locations where motion of tectonic plates, often associated with earthquakes, is accommodated. Despite a rapid increase in the understanding of faults in the last decades, our knowledge of their geometry, petrophysical properties, and controlling processes remains incomplete. The central questions addressed here in our study of the Dead Sea Transform (DST) in the Middle East are as follows: (1) What are the structure and kinematics of a large fault zone? (2) What controls its structure and kinematics? (3) How does the DST compare to other plate boundary fault zones? The DST has accommodated a total of 105 km of left-lateral transform motion between the African and Arabian plates since early Miocene (similar to 20 Ma). The DST segment between the Dead Sea and the Red Sea, called the Arava/Araba Fault (AF), is studied here using a multidisciplinary and multiscale approach from the mu m to the plate tectonic scale. We observe that under the DST a narrow, subvertical zone cuts through crust and lithosphere. First, from west to east the crustal thickness increases smoothly from 26 to 39 km, and a subhorizontal lower crustal reflector is detected east of the AF. Second, several faults exist in the upper crust in a 40 km wide zone centered on the AF, but none have kilometer-size zones of decreased seismic velocities or zones of high electrical conductivities in the upper crust expected for large damage zones. Third, the AF is the main branch of the DST system, even though it has accommodated only a part (up to 60 km) of the overall 105 km of sinistral plate motion. Fourth, the AF acts as a barrier to fluids to a depth of 4 km, and the lithology changes abruptly across it. Fifth, in the top few hundred meters of the AF a locally transpressional regime is observed in a 100-300 m wide zone of deformed and displaced material, bordered by subparallel faults forming a positive flower structure. Other segments of the AF have a transtensional character with small pull-aparts along them. The damage zones of the individual faults are only 5-20 m wide at this depth range. Sixth, two areas on the AF show mesoscale to microscale faulting and veining in limestone sequences with faulting depths between 2 and 5 km. Seventh, fluids in the AF are carried downward into the fault zone. Only a minor fraction of fluids is derived from ascending hydrothermal fluids. However, we found that on the kilometer scale the AF does not act as an important fluid conduit. Most of these findings are corroborated using thermomechanical modeling where shear deformation in the upper crust is localized in one or two major faults; at larger depth, shear deformation occurs in a 20-40 km wide zone with a mechanically weak decoupling zone extending subvertically through the entire lithosphere.