Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabit Nurumbetov is active.

Publication


Featured researches published by Gabit Nurumbetov.


Chemical Reviews | 2016

Cu(0)-Mediated Living Radical Polymerization: A Versatile Tool for Materials Synthesis

Athina Anastasaki; Vasiliki Nikolaou; Gabit Nurumbetov; Paul Wilson; Kristian Kempe; John F. Quinn; Thomas P. Davis; Michael R. Whittaker; David M. Haddleton

Materials Synthesis Athina Anastasaki,†,‡ Vasiliki Nikolaou,† Gabit Nurumbetov,† Paul Wilson,†,‡ Kristian Kempe,†,‡ John F. Quinn,‡ Thomas P. Davis,†,‡ Michael R. Whittaker,†,‡ and David M. Haddleton*,†,‡ †Chemistry Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom ‡ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia


Nature Chemistry | 2017

Sequence-controlled methacrylic multiblock copolymers via sulfur-free RAFT emulsion polymerization

Nikolaos G. Engelis; Athina Anastasaki; Gabit Nurumbetov; Nghia P. Truong; Vasiliki Nikolaou; Ataulla Shegiwal; Michael R. Whittaker; Thomas P. Davis; David M. Haddleton

Translating the precise monomer sequence control achieved in nature over macromolecular structure (for example, DNA) to whole synthetic systems has been limited due to the lack of efficient synthetic methodologies. So far, chemists have only been able to synthesize monomer sequence-controlled macromolecules by means of complex, time-consuming and iterative chemical strategies such as solid-state Merrifield-type approaches or molecularly dissolved solution-phase systems. Here, we report a rapid and quantitative synthesis of sequence-controlled multiblock polymers in discrete stable nanoscale compartments via an emulsion polymerization approach in which a vinyl-terminated macromolecule is used as an efficient chain-transfer agent. This approach is environmentally friendly, fully translatable to industry and thus represents a significant advance in the development of complex macromolecule synthesis, where a high level of molecular precision or monomer sequence control confers potential for molecular targeting, recognition and biocatalysis, as well as molecular information storage. Achieving sequence control in a synthetic polymer is more challenging and time consuming than it is for biopolymers. Now, it has been shown that the synthesis of sequence-controlled multiblock copolymers can be carried out via emulsion polymerization. This approach is environmentally friendly and yields complex multiblock materials with low dispersity and high yields.


Polymer Chemistry | 2014

Absolut “copper catalyzation perfected”; robust living polymerization of NIPAM: Guinness is good for SET-LRP

Christopher Waldron; Qiang Zhang; Zaidong Li; Vasiliki Nikolaou; Gabit Nurumbetov; Jamie Godfrey; Ronan McHale; Gokhan Yilmaz; Rajan K. Randev; Mony Girault; Kayleigh. A. McEwan; David M. Haddleton; Martijn Droesbeke; Alice J. Haddleton; Paul Wilson; Alexandre Simula; Jennifer Collins; Danielle J. Lloyd; James A. Burns; Christopher J. Summers; Claudia Houben; Athina Anastasaki; Muxiu Li; C. Remzi Becer; Jenny K. Kiviaho; Nuttapol Risangud

The controlled polymerization of N-isopropyl acrylamide (NIPAM) is reported in a range of international beers, wine, ciders and spirits utilizing Cu(0)-mediated living radical polymerization (SET-LRP). Highly active Cu(0) is first formed in situ by the rapid disproportionation of [Cu(I)(Me6-Tren)Br] in the commercial water–alcohol mixtures. Rapid, yet highly controlled, radical polymerization follows (Đ values as low as 1.05) despite the numerous chemicals of diverse functionality present in these solvents e.g. alpha acids, sugars, phenols, terpenoids, flavonoids, tannins, metallo-complexes, anethole etc. The results herein demonstrate the robust nature of the aqueous SET-LRP protocol, underlining its ability to operate efficiently in a wide range of complex chemical environments.


Polymer Chemistry | 2015

Synthesis of well-defined α,ω-telechelic multiblock copolymers in aqueous medium: in situ generation of α,ω-diols

Alexandre Simula; Vasiliki Nikolaou; Athina Anastasaki; Fehaid Alsubaie; Gabit Nurumbetov; Paul Wilson; Kristian Kempe; David M. Haddleton

The synthesis of well-defined α,ω-dihydroxyl telechelic multiblock copolymers by sequential in situ chain extensions via aqueous Cu(0) mediated living radical polymerization (SET-LRP) is reported. The rapid disproportionation of Cu(I)Br in the presence of Me6-TREN in water has been exploited to generate Cu(0) and [Cu(II)Br2/Me6-TREN] in situ, resulting in rapid reaction rate and narrow molecular weight distributions. Under optimized conditions, a telechelic heptablock copolymer was obtained within 2 hours with a final dispersity of ∼1.1 while the monomer conversion was >99% for each block. A range of acrylamides and acrylates have been successfully incorporated within the same polymer backbone, including N-isopropylacrylamide (NIPAAm), N,N-diethylacrylamide (DEA) and N,N-dimethylacrylamide (DMA) and poly(ethylene glycol) methyl ether acrylate (PEGA480). The thermo-responsive nature of these materials was subsequently demonstrated via cloud point measurements as both a function of molecular weight and backbone functionality. In addition, the typically unwanted hydrolysis of the α- and ω-end groups in aqueous media was further exploited via isocyanate post-polymerization modifications to alter the end group functionality.


Chemical Communications | 2015

Photo-induced living radical polymerization of acrylates utilizing a discrete copper(II)–formate complex

Athina Anastasaki; Vasiliki Nikolaou; Francesca Brandford-Adams; Gabit Nurumbetov; Qiang Zhang; Guy J. Clarkson; David J. Fox; Paul Wilson; Kristian Kempe; David M. Haddleton

A photo-polymerization protocol, utilizing a pre-formed and well-characterized Cu(II) formate complex, [Cu(Me6-Tren)(O2CH)](ClO4), mediated by UV light is described. In the absence of additional reducing agents and/or photosensitizers, ppm concentrations of the oxidatively stable [Cu(Me6-Tren)(O2CH)](ClO4), furnish near-quantitative conversions within 2 h, yielding poly(acrylates) with low dispersities (∼1.10) and exceptional end-group fidelity, capable of undergoing in situ chain extension and block copolymerization.


Langmuir | 2013

Multicompartmental Janus microbeads from branched polymers by single-emulsion droplet microfluidics.

Yunhua Chen; Gabit Nurumbetov; Rong Chen; Nicholas Ballard; Stefan Antonius Franciscus Bon

We describe a versatile and facile route for the preparation of Janus microbeads using single emulsion droplet-based microfluidics, in which water droplets that contain a mixture of branched poly(N-isopropylacrylamide)-co-(poly(ethylene glycol)diacrylate)-co-(methacrylic acid) and colloidal particles form the basis of our approach. The colloidal particles, poly(methyl methacrylate) microspheres or titanium dioxide particles, and iron oxide nanoparticles are spatially positioned within the water droplets through gravity and an externally applied magnetic force, respectively. Evaporation of water leads to gel formation of the branched copolymer matrix as a result of physical cross-linking through hydrogen bond interactions, fixing the spatial position of the colloidal particles. The thermo- and pH-responsive nature of the branched poly(N-isopropylacrylamide) (PNIPAm)-based copolymer allows for the disintegration of the polymer network of the Janus microbeads and a triggered release of the colloidal content at temperatures below the lower critical solution temperature (LCST) and at increased pH values.


Polymer Chemistry | 2012

A simple microfluidic device for fabrication of double emulsion droplets and polymer microcapsules

Gabit Nurumbetov; Nicholas Ballard; Stefan Antonius Franciscus Bon

We demonstrate that by using a syringe needle, plastic tubing, two glass capillaries and epoxy glue a microfluidic device can be fabricated straightforwardly that allows for the production of double emulsions, or in other words the generation of droplets-in-droplets. The device in essence is a serial combination of droplet generation by co-flow and a T-junction. To reduce potential issues with channel wetting, we established that an “obstructed” T-junction outperformed a conventional T-junction. We illustrate the versatility of our device through production of a range of polymer microcapsules, including ones that contain a waterborne dispersion of colour changing pigment, and microcapsules with compartmentalized ferrofluidic segments, that is capsules that contain more than one droplet of ferrofluid.


Soft Matter | 2013

Understanding the multiple orientations of isolated superellipsoidal hematite particles at the oil–water interface

Adam R. Morgan; Nicholas Ballard; Luke A. Rochford; Gabit Nurumbetov; Thomas F. Skelhon; Stefan Antonius Franciscus Bon

Non-spherical particles have the potential to adopt multiple orientations once adhered to a liquid–liquid interface. In this work we combine simulations and experiments to investigate the behaviour of an isolated microscopic hematite particle of superellipsoidal shape. We show that this microparticle can adopt one of three orientations when adhered to a hexadecane–water interface. Two of the orientations, and estimates for their relative populations, could be assigned to two thermodynamic minima on the energy landscape as generated through both free-energy minimization and particle trajectory simulations. The third orientation was found to correspond to a kinetically trapped state, existing on certain particle trajectories in a region of a negligible gradient in free energy. To underpin the simulations the individual orientation of a set of 100 isolated particles was explored by means of scanning electron microscopy (SEM) using the gel trapping technique as a tool. Atomic force microscopy (AFM) was additionally used to support the experimental findings. This is the first example of such a kinetic metastable state being observed for particles at liquid–liquid interfaces.


Polymer Chemistry | 2016

Synthesis of well-defined catechol polymers for surface functionalization of magnetic nanoparticles

Qiang Zhang; Gabit Nurumbetov; Alexandre Simula; Chongyu Zhu; Muxiu Li; Paul Wilson; Kristian Kempe; Bin Yang; Lei Tao; David M. Haddleton

In order to obtain dual-modal fluorescent magnetic nanoparticles, well-defined fluorescent functional polymers with terminal catechol groups were synthesized by single electron transfer living radical polymerization (SET-LRP) under aqueous conditions for “grafting to” modification of iron oxide nanoparticles. Acrylamide, N-isopropylacrylamide, poly(ethylene glycol) methyl ether acrylate, 2-hydroxyethyl acrylate, glycomonomer and rhodamine B piperazine acrylamide were homo-polymerized or block-copolymerized directly from an unprotected dopamine-functionalized initiator in an ice-water bath. The Cu-LRP tolerated the presence of catechol groups leading to polymers with narrow molecular weight distributions (Mw/Mn < 1.2) and high or full conversion obtained in a few minutes. Subsequent immobilization of dopamine-terminal copolymers on an iron oxide surface were successful as demonstrated by Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), transition electron microscopy (TEM) and thermogravimetric analysis (TGA), generating stable polymer-coated fluorescent magnetic nanoparticles. The nanoparticles coated with hydrophilic polymers showed no significant cytotoxicity when compared with unmodified particles and the cellular-uptake of fluorescent nanoparticles by A549 cells was very efficient, which also indicated the potential application of these advanced nano materials for bio-imaging.


Polymer Chemistry | 2017

Methacrylic block copolymers by sulfur free RAFT (SF RAFT) free radical emulsion polymerisation

Gabit Nurumbetov; Nikolaos G. Engelis; Jamie Godfrey; Rachel Alice Hand; Athina Anastasaki; Alexandre Simula; Vasiliki Nikolaou; David M. Haddleton

We demonstrate the use of sulfur free reversible addition–fragmentation chain transfer polymerisation (RAFT) as a versatile tool for the controlled synthesis of methacrylic block and comb-like copolymers. Sulfur free RAFT (SF-RAFT) utilises vinyl terminated macromonomers obtained via catalytic chain transfer polymerisation (CCTP) of methacrylates as a chain transfer agent (CTA), and thus precluding adverse aspects of the RAFT such as toxicity of dithioesters. We have synthesised a range of narrow dispersity block copolymers (Đ < 1.2) and comb-like macromolecules by employing emulsion polymerisation allowing for the preparation of relatively large quantities (∼50 g) of the above mentioned copolymers promptly and straightforwardly. Copolymers were characterised using 1H NMR, size exclusion chromatography (SEC), thermogravimetric analysis (TGA) and matrix-assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF-MS) techniques.

Collaboration


Dive into the Gabit Nurumbetov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Muxiu Li

University of Warwick

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge