Gabor Egervari
Icahn School of Medicine at Mount Sinai
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gabor Egervari.
Neuropsychopharmacology | 2014
Henrietta Szutorisz; Jennifer A. DiNieri; Eric S. Sweet; Gabor Egervari; Michael Michaelides; Jenna M. Carter; Yanhua Ren; Michael L. Miller; Robert D. Blitzer; Yasmin L. Hurd
Recent attention has been focused on the long-term impact of cannabis exposure, for which experimental animal studies have validated causal relationships between neurobiological and behavioral alterations during the individual’s lifetime. Here, we show that adolescent exposure to Δ9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis, results in behavioral and neurobiological abnormalities in the subsequent generation of rats as a consequence of parental germline exposure to the drug. Adult F1 offspring that were themselves unexposed to THC displayed increased work effort to self-administer heroin, with enhanced stereotyped behaviors during the period of acute heroin withdrawal. On the molecular level, parental THC exposure was associated with changes in the mRNA expression of cannabinoid, dopamine, and glutamatergic receptor genes in the striatum, a key component of the neuronal circuitry mediating compulsive behaviors and reward sensitivity. Specifically, decreased mRNA and protein levels, as well as NMDA receptor binding were observed in the dorsal striatum of adult offspring as a consequence of germline THC exposure. Electrophysiologically, plasticity was altered at excitatory synapses of the striatal circuitry that is known to mediate compulsive and goal-directed behaviors. These findings demonstrate that parental history of germline THC exposure affects the molecular characteristics of the striatum, can impact offspring phenotype, and could possibly confer enhanced risk for psychiatric disorders in the subsequent generation.
Nature Neuroscience | 2015
Ja Wook Koo; Michelle S. Mazei-Robison; Quincey LaPlant; Gabor Egervari; Kevin M Braunscheidel; Danielle N. Adank; Deveroux Ferguson; Jian Feng; HaoSheng Sun; Kimberly N. Scobie; Diane Damez-Werno; Efrain Ribeiro; Catherine J. Peña; Deena M. Walker; Rosemary C. Bagot; Michael E. Cahill; Sarah Ann R Anderson; Benoit Labonté; Georgia E. Hodes; Heidi A. Browne; Benjamin Chadwick; Alfred J. Robison; Vincent Vialou; Caroline Dias; Zachary S. Lorsch; Ezekiell Mouzon; Mary Kay Lobo; David M. Dietz; Scott J. Russo; Rachael L. Neve
Brain-derived neurotrophic factor (BDNF) has a crucial role in modulating neural and behavioral plasticity to drugs of abuse. We found a persistent downregulation of exon-specific Bdnf expression in the ventral tegmental area (VTA) in response to chronic opiate exposure, which was mediated by specific epigenetic modifications at the corresponding Bdnf gene promoters. Exposure to chronic morphine increased stalling of RNA polymerase II at these Bdnf promoters in VTA and altered permissive and repressive histone modifications and occupancy of their regulatory proteins at the specific promoters. Furthermore, we found that morphine suppressed binding of phospho-CREB (cAMP response element binding protein) to Bdnf promoters in VTA, which resulted from enrichment of trimethylated H3K27 at the promoters, and that decreased NURR1 (nuclear receptor related-1) expression also contributed to Bdnf repression and associated behavioral plasticity to morphine. Our findings suggest previously unknown epigenetic mechanisms of morphine-induced molecular and behavioral neuroadaptations.
Neuroscience & Biobehavioral Reviews | 2018
Gabor Egervari; Roberto Ciccocioppo; J. David Jentsch; Yasmin L. Hurd
HIGHLIGHTSOnly a subset of people exposed to abused substances go on to develop addiction.Individual differences in vulnerability exist in highly homogenous populations.Key factors include behavioral phenotypes, genetics and epigenetics.Knowledge of individual risk helps to target prevention and treatment efforts. ABSTRACT Substance use disorders continue to impose increasing medical, financial and emotional burdens on society in the form of morbidity and overdose, family disintegration, loss of employment and crime, while advances in prevention and treatment options remain limited. Importantly, not all individuals exposed to abused substances effectively develop the disease. Genetic factors play a significant role in determining addiction vulnerability and interactions between innate predisposition, environmental factors and personal experiences are also critical. Thus, understanding individual differences that contribute to the initiation of substance use as well as on long‐term maladaptations driving compulsive drug use and relapse propensity is of critical importance to reduce this devastating disorder. In this paper, we discuss current topics in the field of addiction regarding individual vulnerability related to behavioral endophenotypes, neural circuits, as well as genetics and epigenetic mechanisms. Expanded knowledge of these factors is of importance to improve and personalize prevention and treatment interventions in the future.
Neurotoxicology and Teratology | 2016
Henrietta Szutorisz; Gabor Egervari; James Sperry; Jenna M. Carter; Yasmin L. Hurd
Cannabis (Cannabis sativa, Cannabis indica) is the illicit drug most frequently abused by young men and women. The growing use of the drug has raised attention not only on the impact of direct exposure on the developing brain and behavior later in life, but also on potential cross-generational consequences. Our previous work demonstrated that adolescent exposure to Δ9-tetrahydrocannabinol (THC), the main psychoactive component of cannabis, affects reward-related behavior and striatal gene expression in male offspring that were unexposed to the drug during their own lifespan. The significant sex differences documented for most addiction and psychiatric disorders suggest that understanding the perturbation of the brain in the two sexes due to cannabis could provide insights about neuronal systems underpinning vulnerability to psychiatric illnesses. In the current study, we expanded our previous observations in males by analyzing the female brain for specific aberrations associated with cross-generational THC exposure. Based on the impact of adolescent development on subsequent adult behavioral pathology, we examined molecular patterns during both adolescence and adulthood. The results revealed a switch from the ventral striatum during adolescence to the dorsal striatum in adulthood in alterations of gene expression related to synaptic plasticity in both sexes. Females, however, exhibited stronger correlation patterns between genes and also showed locomotor disturbances not evident in males. Overall, the findings demonstrate cross-generational consequences of parental THC exposure in both male and female offspring.
Biological Psychiatry | 2017
Gabor Egervari; Joseph A. Landry; James Callens; John F. Fullard; Panos Roussos; Éva Keller; Yasmin L. Hurd
BACKGROUND Opiate abuse and overdose reached epidemic levels in the United States. However, despite significant advances in animal and in vitro models, little knowledge has been directly accrued regarding the neurobiology of the opiate-addicted human brain. METHODS We used postmortem human brain specimens from a homogeneous European Caucasian population of heroin users for transcriptional and epigenetic profiling, as well as direct assessment of chromatin accessibility in the striatum, a brain region central to reward and emotion. A rat heroin self-administration model was used to obtain translational molecular and behavioral insights. RESULTS Our transcriptome approach revealed marked impairments related to glutamatergic neurotransmission and chromatin remodeling in the human striatum. A series of biochemical experiments tracked the specific location of the epigenetic disturbances to hyperacetylation of lysine 27 of histone H3, showing dynamic correlations with heroin use history and acute opiate toxicology. Targeted investigation of GRIA1, a glutamatergic gene implicated in drug-seeking behavior, verified the increased enrichment of lysine-27 acetylated histone H3 at discrete loci, accompanied by enhanced chromatin accessibility at hyperacetylated regions in the gene body. Analogous epigenetic impairments were detected in the striatum of heroin self-administering rats. Using this translational model, we showed that bromodomain inhibitor JQ1, which blocks the functional readout of acetylated lysines, reduced heroin self-administration and cue-induced drug-seeking behavior. CONCLUSIONS Overall, our data suggest that heroin-related histone H3 hyperacetylation contributes to glutamatergic transcriptional changes that underlie addiction behavior and identify JQ1 as a promising candidate for targeted clinical interventions in heroin use disorder.
Neuropsychopharmacology | 2016
Gabor Egervari; Didier Jutras-Aswad; Joseph A. Landry; Michael L. Miller; Sarah Ann R Anderson; Michael Michaelides; Michelle M. Jacobs; Cyril J. Peter; Georgia Yiannoulos; Xun Liu; Yasmin L. Hurd
Genetic factors impact behavioral traits relevant to numerous psychiatric disorders and risk-taking behaviors, and different lines of evidence have indicated that discrete neurobiological systems contribute to such individual differences. In this study, we explored the relationship of genetic variants of the prodynorphin (PDYN) gene, which is enriched in the striatonigral/striatomesencephalic pathway, a key neuronal circuit implicated in positive ‘Go’ behavioral choice and action. Our multidisciplinary approach revealed that the single nucleotide polymorphism (SNP) rs2235749 (in high linkage disequilibrium with rs910080) modifies striatal PDYN expression via impaired binding of miR-365, a microRNA that targets the PDYN 3′-untranslated region (3′UTR), and is significantly associated to novelty- and reward-related behavioral traits in humans and translational animal models. Carriers of the rs2235749G allele exhibited increased levels of PDYN 3′UTR in vitro and had elevated mRNA expression in the medial nucleus accumbens shell (NAcSh) and caudate nucleus in postmortem human brains. There was an association of rs2235749 with novelty-seeking trait and a strong genotype–dose association with positive reinforcement behavior in control subjects, which differed in cannabis-dependent individuals. Using lentiviral miRZip-365 constructs selectively expressed in Pdyn-neurons of the NAcSh, we demonstrated that the Pdyn-miR365 interaction in the NAcSh directly influences novelty-seeking exploratory behavior and facilitates self-administration of natural reward. Overall, this translational study suggests that genetically determined miR-365-mediated epigenetic regulation of PDYN expression in mesolimbic striatonigral/striatomesencephalic circuits possibly contributes to novelty seeking and positive reinforcement traits.
The Journal of Physiology | 2017
Gabor Egervari; Tanni Rahman
Alcohol use disorder (AUD) is characterized by craving, loss of control over intake and continued use despite negative consequences. This article is protected by copyright. All rights reserved
Neuropsychopharmacology | 2017
Michael Michaelides; Michael L. Miller; Jennifer A. DiNieri; Juan L. Gomez; Elizabeth Schwartz; Gabor Egervari; Gene Jack Wang; Charles V. Mobbs; Nora D. Volkow; Yasmin L. Hurd
Appetitive drive is influenced by coordinated interactions between brain circuits that regulate reinforcement and homeostatic signals that control metabolism. Glucose modulates striatal dopamine (DA) and regulates appetitive drive and reinforcement learning. Striatal DA D2 receptors (D2Rs) also regulate reinforcement learning and are implicated in glucose-related metabolic disorders. Nevertheless, interactions between striatal D2R and peripheral glucose have not been previously described. Here we show that manipulations involving striatal D2R signaling coincide with perseverative and impulsive-like responding for sucrose, a disaccharide consisting of fructose and glucose. Fructose conveys orosensory (ie, taste) reinforcement but does not convey metabolic (ie, nutrient-derived) reinforcement. Glucose however conveys orosensory reinforcement but unlike fructose, it is a major metabolic energy source, underlies sustained reinforcement, and activates striatal circuitry. We found that mice with deletion of dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32) exclusively in D2R-expressing cells exhibited preferential D2R changes in the nucleus accumbens (NAc), a striatal region that critically regulates sucrose reinforcement. These changes coincided with perseverative and impulsive-like responding for sucrose pellets and sustained reinforcement learning of glucose-paired flavors. These mice were also characterized by significant glucose intolerance (ie, impaired glucose utilization). Systemic glucose administration significantly attenuated sucrose operant responding and D2R activation or blockade in the NAc bidirectionally modulated blood glucose levels and glucose tolerance. Collectively, these results implicate NAc D2R in regulating both peripheral glucose levels and glucose-dependent reinforcement learning behaviors and highlight the notion that glucose metabolic impairments arising from disrupted NAc D2R signaling are involved in compulsive and perseverative feeding behaviors.
Molecular Psychiatry | 2017
Michael L. Miller; Yanhua Ren; Henrietta Szutorisz; N A Warren; C Tessereau; Gabor Egervari; A Mlodnicka; Mohit Kapoor; Bader Chaarani; Claudia V. Morris; Gunter Schumann; Hugh Garavan; A M Goate; Michael J. Bannon; Jeffrey M. Halperin; Yasmin L. Hurd
Impulsivity, a multifaceted behavioral hallmark of attention-deficit/hyperactivity disorder (ADHD), strongly influences addiction vulnerability and other psychiatric disorders that incur enormous medical and societal burdens yet the neurobiological underpinnings linking impulsivity to disease remain poorly understood. Here we report the critical role of ventral striatal cAMP-response element modulator (CREM) in mediating impulsivity relevant to drug abuse vulnerability. Using an ADHD rat model, we demonstrate that impulsive animals are neurochemically and behaviorally more sensitive to heroin and exhibit reduced Crem expression in the nucleus accumbens core. Virally increasing Crem levels decreased impulsive action, thus establishing a causal relationship. Genetic studies in seven independent human populations illustrate that a CREM promoter variant at rs12765063 is associated with impulsivity, hyperactivity and addiction-related phenotypes. We also reveal a role of Crem in regulating striatal structural plasticity. Together, these results highlight that ventral striatal CREM mediates impulsivity related to substance abuse and suggest that CREM and its regulated network may be promising therapeutic targets.
The Journal of Neuroscience | 2016
Gabor Egervari
Addiction is a chronic, relapsing disorder characterized by craving, compulsive drug use, and loss of control over limiting drug intake ([Koob and Volkow, 2010][1]). The emergence of negative-affective states (e.g., dysphoria, anxiety, irritability) with chronic drug use has been hypothesized to