John F. Fullard
Icahn School of Medicine at Mount Sinai
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John F. Fullard.
Nature Neuroscience | 2016
Menachem Fromer; Panos Roussos; Solveig K. Sieberts; Jessica S. Johnson; David H. Kavanagh; Thanneer M. Perumal; Douglas M. Ruderfer; Edwin C. Oh; Aaron Topol; Hardik Shah; Lambertus Klei; Robin Kramer; Dalila Pinto; Zeynep H. Gümüş; A. Ercument Cicek; Kristen Dang; Andrew Browne; Cong Lu; Lu Xie; Ben Readhead; Eli A. Stahl; Jianqiu Xiao; Mahsa Parvizi; Tymor Hamamsy; John F. Fullard; Ying-Chih Wang; Milind Mahajan; Jonathan Derry; Joel T. Dudley; Scott E. Hemby
Over 100 genetic loci harbor schizophrenia-associated variants, yet how these variants confer liability is uncertain. The CommonMind Consortium sequenced RNA from dorsolateral prefrontal cortex of people with schizophrenia (N = 258) and control subjects (N = 279), creating a resource of gene expression and its genetic regulation. Using this resource, ∼20% of schizophrenia loci have variants that could contribute to altered gene expression and liability. In five loci, only a single gene was involved: FURIN, TSNARE1, CNTN4, CLCN3 or SNAP91. Altering expression of FURIN, TSNARE1 or CNTN4 changed neurodevelopment in zebrafish; knockdown of FURIN in human neural progenitor cells yielded abnormal migration. Of 693 genes showing significant case-versus-control differential expression, their fold changes were ≤ 1.33, and an independent cohort yielded similar results. Gene co-expression implicates a network relevant for schizophrenia. Our findings show that schizophrenia is polygenic and highlight the utility of this resource for mechanistic interpretations of genetic liability for brain diseases.
Cell Reports | 2014
Panos Roussos; Amanda C. Mitchell; Georgios Voloudakis; John F. Fullard; Venu Pothula; Jonathan Tsang; Eli A. Stahl; Anastasios Georgakopoulos; Douglas M. Ruderfer; Alexander Charney; Yukinori Okada; Katherine A. Siminovitch; Jane Worthington; Leonid Padyukov; Lars Klareskog; Peter K. Gregersen; Robert M. Plenge; Soumya Raychaudhuri; Menachem Fromer; Shaun Purcell; Kristen J. Brennand; Nikolaos K. Robakis; Eric E. Schadt; Schahram Akbarian; Pamela Sklar
A large portion of common variant loci associated with genetic risk for schizophrenia reside within noncoding sequence of unknown function. Here, we demonstrate promoter and enhancer enrichment in schizophrenia variants associated with expression quantitative trait loci (eQTL). The enrichment is greater when functional annotations derived from the human brain are used relative to peripheral tissues. Regulatory trait concordance analysis ranked genes within schizophrenia genome-wide significant loci for a potential functional role, based on colocalization of a risk SNP, eQTL, and regulatory element sequence. We identified potential physical interactions of noncontiguous proximal and distal regulatory elements. This was verified in prefrontal cortex and -induced pluripotent stem cell-derived neurons for the L-type calcium channel (CACNA1C) risk locus. Our findings point to a functional link between schizophrenia-associated noncoding SNPs and 3D genome architecture associated with chromosomal loopings and transcriptional regulation in the brain.
Science | 2016
Oscar Franzén; Raili Ermel; Ariella Cohain; Nicholas Akers; Antonio Di Narzo; Husain A. Talukdar; Hassan Foroughi-Asl; Claudia Giambartolomei; John F. Fullard; Katyayani Sukhavasi; Sulev Kõks; Li-Ming Gan; Chiara Giannarelli; Jason C. Kovacic; Christer Betsholtz; Bojan Losic; Tom Michoel; Ke Hao; Panos Roussos; Josefin Skogsberg; Arno Ruusalepp; Eric E. Schadt; Johan Björkegren
Genetic variation and coronary artery disease Most genetic variants lie outside protein-coding genes, but their effects, especially in human health, are not well understood. Franzén et al. examined gene expression in tissues affected by coronary artery disease (CAD). They found that individuals with loci that have been associated with CAD in genome-wide analyses had different patterns of tissue-specific gene expression than individuals without these genetic variants. Similarly, tissues not associated with CAD did not have CAD-like expression patterns. Thus, tissue-specific data can be used to dissect the genetic effects that predispose individuals to CAD. Science, this issue p. 827 A gene expression survey in patients with coronary artery disease reveals how genetic variation affects the risk of heart failure. Genome-wide association studies (GWAS) have identified hundreds of cardiometabolic disease (CMD) risk loci. However, they contribute little to genetic variance, and most downstream gene-regulatory mechanisms are unknown. We genotyped and RNA-sequenced vascular and metabolic tissues from 600 coronary artery disease patients in the Stockholm-Tartu Atherosclerosis Reverse Networks Engineering Task study (STARNET). Gene expression traits associated with CMD risk single-nucleotide polymorphism (SNPs) identified by GWAS were more extensively found in STARNET than in tissue- and disease-unspecific gene-tissue expression studies, indicating sharing of downstream cis-/trans-gene regulation across tissues and CMDs. In contrast, the regulatory effects of other GWAS risk SNPs were tissue-specific; abdominal fat emerged as an important gene-regulatory site for blood lipids, such as for the low-density lipoprotein cholesterol and coronary artery disease risk gene PCSK9. STARNET provides insights into gene-regulatory mechanisms for CMD risk loci, facilitating their translation into opportunities for diagnosis, therapy, and prevention.
Biological Psychiatry | 2016
Panos Roussos; Stella G. Giakoumaki; Chrysoula Zouraraki; John F. Fullard; Vasiliki-Eirini Karagiorga; Eva-Maria Tsapakis; Zoe Petraki; Larry J. Siever; Todd Lencz; Anil K. Malhotra; Cleanthe Spanaki; Panos Bitsios
BACKGROUND Prepulse inhibition (PPI) of the startle reflex has been suggested as a candidate endophenotype for schizophrenia research, as it shows high heritability and has been found deficient in schizophrenia spectrum disorders. The objectives of the study were to 1) identify common genetic variants associated with baseline startle and PPI; 2) estimate the single nucleotide polymorphism heritability; and 3) examine the relationship of polygenic score for schizophrenia with baseline startle and PPI. METHODS A cohort of healthy young male subjects (n = 1493) originating from the Learning on Genetics of Schizophrenia Spectrum project was assessed for baseline startle and PPI. The most recent genome-wide association study in schizophrenia from the Psychiatric Genomics Consortium 2 was used to calculate polygenic scores. RESULTS Eleven loci showed suggestive association (p < 10(-6)) with baseline startle and PPI in the discovery cohort. Additional genotyping in a replication cohort identified genome-wide significant association at two loci (rs61810702 and rs4718984). These loci were co-localized with expression quantitative trait loci associated with gene expression of nerve growth factor (NGF) and calneuron 1 (CALN1) genes. Estimation of the genetic and environmental contributions to baseline startle and PPI showed a substantial single nucleotide polymorphism heritability for 120-ms PPI stimuli. Increased polygenic risk score for schizophrenia was associated with reduced PPI. CONCLUSIONS Common genetic variation has an important role in the etiology of schizophrenia and PPI impairments. Overall, these data support the idea that PPI is a valid endophenotype that can be used to explore the genetic architecture of schizophrenia.
Schizophrenia Research | 2016
John F. Fullard; Tobias Halene; Claudia Giambartolomei; Vahram Haroutunian; Schahram Akbarian; Panos Roussos
The Psychiatric Genomics Consortium-Schizophrenia Workgroup (PGC-SCZ) recently identified 108 loci associated with increased risk for schizophrenia (SCZ). The vast majority of these variants reside within non-coding sequences of the genome and are predicted to exert their effects by affecting the mechanism of action of cis regulatory elements (CREs), such as promoters and enhancers. Although a number of large-scale collaborative efforts (e.g. ENCODE) have achieved a comprehensive mapping of CREs in human cell lines or tissue homogenates, it is becoming increasingly evident that many risk-associated variants are enriched for expression Quantitative Trait Loci (eQTLs) and CREs in specific tissues or cells. As such, data derived from previous research endeavors may not capture fully cell-type and/or region specific changes associated with brain diseases. Coupling recent technological advances in genomics with cell-type specific methodologies, we are presented with an unprecedented opportunity to better understand the genetics of normal brain development and function and, in turn, the molecular basis of neuropsychiatric disorders. In this review, we will outline ongoing efforts towards this goal and will discuss approaches with the potential to shed light on the mechanism(s) of action of cell-type specific cis regulatory elements and their putative roles in disease, with particular emphasis on understanding the manner in which the epigenome and CREs influence the etiology of SCZ.
Human Molecular Genetics | 2017
John F. Fullard; Claudia Giambartolomei; Mads E. Hauberg; Ke Xu; Georgios Voloudakis; Zhiping Shao; Christopher Bare; Joel T. Dudley; Manuel Mattheisen; Nikolaos K. Robakis; Vahram Haroutunian; Panos Roussos
&NA; Open chromatin provides access to DNA‐binding proteins for the correct spatiotemporal regulation of gene expression. Mapping chromatin accessibility has been widely used to identify the location of cis regulatory elements (CREs) including promoters and enhancers. CREs show tissue‐ and cell‐type specificity and disease‐associated variants are often enriched for CREs in the tissues and cells that pertain to a given disease. To better understand the role of CREs in neuropsychiatric disorders we applied the Assay for Transposase Accessible Chromatin followed by sequencing (ATAC‐seq) to neuronal and non‐neuronal nuclei isolated from frozen postmortem human brain by fluorescence‐activated nuclear sorting (FANS). Most of the identified open chromatin regions (OCRs) are differentially accessible between neurons and non‐neurons, and show enrichment with known cell type markers, promoters and enhancers. Relative to those of non‐neurons, neuronal OCRs are more evolutionarily conserved and are enriched in distal regulatory elements. Transcription factor (TF) footprinting analysis identifies differences in the regulome between neuronal and non‐neuronal cells and ascribes putative functional roles to a number of non‐coding schizophrenia (SCZ) risk variants. Among the identified variants is a Single Nucleotide Polymorphism (SNP) proximal to the gene encoding SNX19. In vitro experiments reveal that this SNP leads to an increase in transcriptional activity. As elevated expression of SNX19 has been associated with SCZ, our data provide evidence that the identified SNP contributes to disease. These results represent the first analysis of OCRs and TF‐binding sites in distinct populations of postmortem human brain cells and further our understanding of the regulome and the impact of neuropsychiatric disease‐associated genetic risk variants.
Biological Psychiatry | 2017
Gabor Egervari; Joseph A. Landry; James Callens; John F. Fullard; Panos Roussos; Éva Keller; Yasmin L. Hurd
BACKGROUND Opiate abuse and overdose reached epidemic levels in the United States. However, despite significant advances in animal and in vitro models, little knowledge has been directly accrued regarding the neurobiology of the opiate-addicted human brain. METHODS We used postmortem human brain specimens from a homogeneous European Caucasian population of heroin users for transcriptional and epigenetic profiling, as well as direct assessment of chromatin accessibility in the striatum, a brain region central to reward and emotion. A rat heroin self-administration model was used to obtain translational molecular and behavioral insights. RESULTS Our transcriptome approach revealed marked impairments related to glutamatergic neurotransmission and chromatin remodeling in the human striatum. A series of biochemical experiments tracked the specific location of the epigenetic disturbances to hyperacetylation of lysine 27 of histone H3, showing dynamic correlations with heroin use history and acute opiate toxicology. Targeted investigation of GRIA1, a glutamatergic gene implicated in drug-seeking behavior, verified the increased enrichment of lysine-27 acetylated histone H3 at discrete loci, accompanied by enhanced chromatin accessibility at hyperacetylated regions in the gene body. Analogous epigenetic impairments were detected in the striatum of heroin self-administering rats. Using this translational model, we showed that bromodomain inhibitor JQ1, which blocks the functional readout of acetylated lysines, reduced heroin self-administration and cue-induced drug-seeking behavior. CONCLUSIONS Overall, our data suggest that heroin-related histone H3 hyperacetylation contributes to glutamatergic transcriptional changes that underlie addiction behavior and identify JQ1 as a promising candidate for targeted clinical interventions in heroin use disorder.
npj Schizophrenia | 2015
Jonathan Tsang; John F. Fullard; Stella G. Giakoumaki; Pavel Katsel; Vasiliki Eirini Karagiorga; Tiffany A. Greenwood; David L. Braff; Larry J. Siever; Panos Bitsios; Vahram Haroutunian; Panos Roussos
Background:Cognitive impairment cuts across traditional diagnostic boundaries and is one of the most typical symptoms in various psychiatric and neurobiological disorders.Aims:The objective of this study was to examine the genetic association between 94 candidate genes, including receptors and enzymes that participate in neurotransmission, with measures of cognition.Methods:The Clinical Dementia Rating (CDR), a global measure of cognition, and genotypes derived from a custom array of 1,536 single-nucleotide polymorphisms (SNPs) in 94 genes were available for a large postmortem cohort of Caucasian cases with Alzheimer’s disease (AD), schizophrenia and controls (n=727). A cohort of healthy young males (n=1,493) originating from the LOGOS project (Learning On Genetics Of Schizophrenia Spectrum) profiled across multiple cognitive domains was available for targeted SNP genotyping. Gene expression was quantified in the superior temporal gyrus of control samples (n=109). The regulatory effect on transcriptional activity was assessed using the luciferase reporter system.Results:The rs5326-A allele at the promoter region of dopamine receptor D1 (DRD1) locus was associated with: (i) poorer cognition (higher CDR) in the postmortem cohort (P=9.325×10−4); (ii) worse cognitive performance relevant to strategic planning in the LOGOS cohort (P=0.008); (iii) lower DRD1 gene expression in the superior temporal gyrus of controls (P=0.038); and (iv) decreased transcriptional activity in human neuroblastoma (SH-SY5Y) cells (P=0.026).Conclusions:An interdisciplinary approach combining genetics with cognitive and molecular neuroscience provided a possible mechanistic link among DRD1 and alterations in cognitive performance.
Genetics | 2015
John F. Fullard; Nicholas E. Baker
Draper, the Drosophila melanogaster homolog of the Ced-1 protein of Caenorhabditis elegans, is a cell-surface receptor required for the recognition and engulfment of apoptotic cells, glial clearance of axon fragments and dendritic pruning, and salivary gland autophagy. To further elucidate mechanisms of Draper signaling, we screened chromosomal deficiencies to identify loci that dominantly modify the phenotype of overexpression of Draper isoform II (suppressed differentiation of the posterior crossvein in the wing). We found evidence for 43 genetic modifiers of Draper II. Twenty-four of the 37 suppressor loci and 3 of the 6 enhancer loci were identified. An additional 5 suppressors and 2 enhancers were identified among mutations in functionally related genes. These studies reveal positive contributions to Drpr signaling for the Jun N-terminal Kinase pathway, supported by genetic interactions with hemipterous, basket, jun, and puckered, and for cytoskeleton regulation as indicated by genetic interactions with rac1, rac2, RhoA, myoblast city, Wiskcott–Aldrich syndrome protein, and the formin CG32138, and for yorkie and expanded. These findings indicate that Jun N-terminal Kinase activation and cytoskeletal remodeling collaborate in Draper signaling. Relationships between Draper signaling and Decapentaplegic signaling, insulin signaling, Salvador/Warts/Hippo signaling, apical-basal cell polarity, and cellular responses to mechanical forces are also discussed.
Nature Communications | 2018
Melanie E. Garrett; Lingyun Song; Alexias Safi; Paola Giusti-Rodriguez; Graham D. Johnson; Annie W. Shieh; Alfonso Buil; John F. Fullard; Panos Roussos; Pamela Sklar; Schahram Akbarian; Vahram Haroutunian; Craig A. Stockmeier; Gregory A. Wray; Kevin P. White; Chunyu Liu; Timothy E. Reddy; Allison E. Ashley-Koch; Patrick F. Sullivan; Gregory E. Crawford
Schizophrenia genome-wide association studies have identified >150 regions of the genome associated with disease risk, yet there is little evidence that coding mutations contribute to this disorder. To explore the mechanism of non-coding regulatory elements in schizophrenia, we performed ATAC-seq on adult prefrontal cortex brain samples from 135 individuals with schizophrenia and 137 controls, and identified 118,152 ATAC-seq peaks. These accessible chromatin regions in the brain are highly enriched for schizophrenia SNP heritability. Accessible chromatin regions that overlap evolutionarily conserved regions exhibit an even higher heritability enrichment, indicating that sequence conservation can further refine functional risk variants. We identify few differences in chromatin accessibility between cases and controls, in contrast to thousands of age-related differential accessible chromatin regions. Altogether, we characterize chromatin accessibility in the human prefrontal cortex, the effect of schizophrenia and age on chromatin accessibility, and provide evidence that our dataset will allow for fine mapping of risk variants.Chromatin accessibility may be altered in disease states. Here the authors carry out ATAC-seq on a large number of samples of dorsolateral prefrontal cortex from individuals with schizophrenia, and healthy controls.