Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gábor Galiba is active.

Publication


Featured researches published by Gábor Galiba.


Theoretical and Applied Genetics | 1995

RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat

Gábor Galiba; S. A. Quarrie; J. Sutka; A. Morgounov; J. W. Snape

A population of single chromosome recombinant lines was developed from the cross between a frost-sensitive, vernalization-insensitive substitution line, ‘Chinese Spring’ (Triticum spelta 5A) and a frost-tolerant, vernalization-sensitive line, ‘Chinese Spring’ (‘Cheyenne’ 5A), and used to map the genes Vrn1 and Fr1 controlling vernalization requirement and frost tolerance, respectively, relative to RFLP markers located on this chromosome. The Vrn1 and Fr1 loci were located closely linked on the distal portion of the long arm of 5AL, but contrary to previous observations, recombination between them was found. Three RFLP markers, Xpsr426, Xcdo504 and Xwg644 were tightly linked to both. The location of Vrn1 suggests that it is homoeologous to other spring habit genes in related species, particularly the Sh2 locus on chromosome 7 (5H) of barley and the Sp1 locus on chromosome 5R of rye.


Journal of Plant Growth Regulation | 2009

Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions

Gabriella Szalai; Tibor Kellős; Gábor Galiba; Gábor Kocsy

The glutathione (GSH)/glutathione disulfide (GSSG) redox couple is involved in several physiologic processes in plants under both optimal and stress conditions. It participates in the maintenance of redox homeostasis in the cells. The redox state of the GSH/GSSG couple is defined by its reducing capacity and the half-cell reduction potential, and differs in the various organs, tissues, cells, and compartments, changing during the growth and development of the plants. When characterizing this redox couple, the synthesis, degradation, oxidation, and transport of GSH and its conjugation with the sulfhydryl groups of other compounds should be considered. Under optimal growth conditions, the high GSH/GSSG ratio results in a reducing environment in the cells which maintains the appropriate structure and activity of protein molecules because of the inhibition of the formation of intermolecular disulfide bridges. In response to abiotic stresses, the GSH/GSSG ratio decreases due to the oxidation of GSH during the detoxification of reactive oxygen species (ROS) and changes in its metabolism. The lower GSH/GSSG ratio activates various defense mechanisms through a redox signalling pathway, which includes several oxidants, antioxidants, and stress hormones. In addition, GSH may control gene expression and the activity of proteins through glutathionylation and thiol-disulfide conversion. This review discusses the size and redox state of the GSH pool, including their regulation, their role in redox signalling and defense processes, and the changes caused by abiotic stress.


Theoretical and Applied Genetics | 2004

Two loci on chromosome 5H determine low-temperature tolerance in a ‘Nure’ (winter) × ‘Tremois’ (spring) barley map

Enrico Francia; Fulvia Rizza; Luigi Cattivelli; A. M. Stanca; Gábor Galiba; B. Tóth; Patrick M. Hayes; Jeffrey S. Skinner; N. Pecchioni

Barley (Hordeum vulgare subsp. vulgare) is an economically important diploid model for the Triticeae; and a better understanding of low-temperature tolerance mechanisms could significantly improve the yield of fall-sown cereals. We developed a new resource for genetic analysis of winter hardiness-related traits, the ‘Nure’ × ‘Tremois’ linkage map, based on a doubled-haploid population that is segregating for low-temperature tolerance and vernalization requirement. Three measures of low-temperature tolerance and one measure of vernalization requirement were used and, for all traits, QTLs were mapped on chromosome 5H. The vernalization response QTL coincides with previous reports at the Vrn-1/Fr1 region of the Triticeae. We also found coincident QTLs at this position for all measures of low-temperature tolerance. Using Composite Interval Mapping, a second proximal set, of coincident QTLs for low-temperature tolerance, and the accumulation of two different COR proteins (COR14b and TMC-Ap3) was identified. The HvCBF4 locus, or another member of the CBF loci clustered in this region, is the candidate gene underlying this QTL. There is a CRT/DRE recognition site in the promoter of cor14b with which a CBF protein could interact. These results support the hypothesis that highly conserved regulatory factors, such as members of the CBF gene family, may regulate the stress responses of a wide range of plant species.


BMC Genomics | 2009

Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome

Alessio Aprile; Anna M. Mastrangelo; Anna Maria De Leonardis; Gábor Galiba; Enrica Roncaglia; Francesco Ferrari; Luigi De Bellis; Luana Turchi; Giovanni Giuliano; Luigi Cattivelli

BackgroundWater stress during grain filling has a marked effect on grain yield, leading to a reduced endosperm cell number and thus sink capacity to accumulate dry matter. The bread wheat cultivar Chinese Spring (CS), a Chinese Spring terminal deletion line (CS_5AL-10) and the durum wheat cultivar Creso were subjected to transcriptional profiling after exposure to mild and severe drought stress at the grain filling stage to find evidences of differential stress responses associated to different wheat genome regions.ResultsThe transcriptome analysis of Creso, CS and its deletion line revealed 8,552 non redundant probe sets with different expression levels, mainly due to the comparisons between the two species. The drought treatments modified the expression of 3,056 probe sets. Besides a set of genes showing a similar drought response in Creso and CS, cluster analysis revealed several drought response features that can be associated to the different genomic structure of Creso, CS and CS_5AL-10. Some drought-related genes were expressed at lower level (or not expressed) in Creso (which lacks the D genome) or in the CS_5AL-10 deletion line compared to CS. The chromosome location of a set of these genes was confirmed by PCR-based mapping on the D genome (or the 5AL-10 region). Many clusters were characterized by different level of expression in Creso, CS and CS_AL-10, suggesting that the different genome organization of the three genotypes may affect plant adaptation to stress. Clusters with similar expression trend were grouped and functional classified to mine the biological mean of their activation or repression. Genes involved in ABA, proline, glycine-betaine and sorbitol pathways were found up-regulated by drought stress. Furthermore, the enhanced expression of a set of transposons and retrotransposons was detected in CS_5AL-10.ConclusionBread and durum wheat genotypes were characterized by a different physiological reaction to water stress and by a substantially different molecular response. The genome organization accounted for differences in the expression level of hundreds of genes located on the D genome or controlled by regulators located on the D genome. When a genomic stress (deletion of a chromosomal region) was combined with low water availability, a molecular response based on the activation of transposons and retrotransposons was observed.


Molecular Genetics and Genomics | 2005

The expression of several Cbf genes at the Fr-A2 locus is linked to frost resistance in wheat

Attila Vágújfalvi; Alessio Aprile; Andrea Miller; Jorge Dubcovsky; Giovanni Delugu; Gábor Galiba; Luigi Cattivelli

The C-repeat binding factor (Cbf) gene family has been shown to have a critical role in the regulation of low-temperature stress response in Arabidopsis. In Triticum monococcum, a locus carrying a family of Cbf-like genes, orthologs of Arabidopsis Cbf genes, is tightly linked to the frost tolerance locus Fr-Am2, representing candidates for the differences in frost tolerance mapped at this locus. In this work we show that several Cbf genes have dramatically different levels of induction after cold exposure in hexaploid wheat. The Cbf-transcription levels differ between substitution and single chromosome recombinant lines carrying different 5A chromosomes or chromosome segments of the chromosome 5A from frost-tolerant and frost-sensitive wheat varieties. When the expression of eight Cbf genes, previously mapped at the Fr-A2 locus was investigated with gene specific primers using real-time RT-PCR, three Cbf sequences (Cbf1A, Cbf1C, Cbf7) showed a significantly higher relative transcription level (more than fourfold change) in lines differing for the Fr-A2 region. Differences in Cbf expression were also associated with a variation in frost tolerance. These results suggest that the amount of some Cbf mRNAs might be a critical factor for determining the level of frost tolerance in wheat.


Plant Physiology | 2010

Regulation of Freezing Tolerance and Flowering in Temperate Cereals: The VRN-1 Connection

Taniya Dhillon; Stephen Pearce; Eric J. Stockinger; Assaf Distelfeld; Chengxia Li; Andrea K. Knox; Ildikó Vashegyi; Attila Vágújfalvi; Gábor Galiba; Jorge Dubcovsky

In winter wheat (Triticum spp.) and barley (Hordeum vulgare) varieties, long exposures to nonfreezing cold temperatures accelerate flowering time (vernalization) and improve freezing tolerance (cold acclimation). However, when plants initiate their reproductive development, freezing tolerance decreases, suggesting a connection between the two processes. To better understand this connection, we used two diploid wheat (Triticum monococcum) mutants, maintained vegetative phase (mvp), that carry deletions encompassing VRN-1, the major vernalization gene in temperate cereals. Homozygous mvp/mvp plants never flower, whereas plants carrying at least one functional VRN-1 copy (Mvp/−) exhibit normal flowering and high transcript levels of VRN-1 under long days. The Mvp/− plants showed reduced freezing tolerance and reduced transcript levels of several cold-induced C-REPEAT BINDING FACTOR transcription factors and COLD REGULATED genes (COR) relative to the mvp/mvp plants. Diploid wheat accessions with mutations in the VRN-1 promoter, resulting in high transcript levels under both long and short days, showed a significant down-regulation of COR14b under long days but not under short days. Taken together, these studies suggest that VRN-1 is required for the initiation of the regulatory cascade that down-regulates the cold acclimation pathway but that additional genes regulated by long days are required for the down-regulation of the COR genes. In addition, our results show that allelic variation in VRN-1 is sufficient to determine differences in freezing tolerance, suggesting that quantitative trait loci for freezing tolerance previously mapped on this chromosome region are likely a pleiotropic effect of VRN-1 rather than the effect of a separate closely linked locus (FROST RESISTANCE-1), as proposed in early freezing tolerance studies.


Planta | 2000

Genetic study of glutathione accumulation during cold hardening in wheat

Gábor Kocsy; Gabriella Szalai; Attila Vágújfalvi; László Stéhli; György Orosz; Gábor Galiba

Abstract. The effect of cold hardening on the accumulation of glutathione (GSH) and its precursors was studied in the shoots and roots of wheat (Triticum aestivum L.) cv. Cheyenne (Ch, frost-tolerant) and cv. Chinese Spring (CS, moderately frost-sensitive), in a T. spelta L. accession (Tsp, frost-sensitive) and in chro- mosome substitution lines CS (Ch 5A) and CS (Tsp 5A). The fast induction of total glutathione accumulation was detected during the first 3 d of hardening in the shoots, especially in the frost-tolerant Ch and CS (Ch 5A). This observation was corroborated by the study of de novo GSH synthesis using [35S]sulfate. In Ch and CS (Ch 5A) the total cysteine, γ-glutamylcysteine (precursors of GSH), hydroxymethylglutathione and GSH contents were greater during the 51-d treatment than in the sensitive genotypes. After 35 d hardening, when the maximum frost tolerance was observed, greater ratios of reduced to oxidised hydroxymethylglutathione and glutathione were detected in Ch and CS (Ch 5A) compared to the sensitive genotypes. A correspondingly greater glutathione reductase (EC 1.6.4.2) activity was also found in Ch and CS (Ch 5A). It can be assumed that chromosome 5A of wheat has an influence on GSH accumulation and on the ratio of reduced to oxidised glutathione as part of a complex regulatory function during hardening. Consequently, GSH may contribute to the enhancement of frost tolerance in wheat.


Molecular Genetics and Genomics | 2000

Two loci on wheat chromosome 5A regulate the differential cold-dependent expression of the cor14b gene in frost-tolerant and frost-sensitive genotypes.

Attila Vágújfalvi; Gábor Galiba; Jorge Dubcovsky; Luigi Cattivelli

Abstract Although cold acclimation in cereals involves the expression of many cold-regulated genes, genetic studies have shown that only very few chromosomal regions carry loci that play an important role in frost tolerance. To investigate the genetic relationship between frost tolerance and the expression of cold-regulated genes, the expression and regulation of the wheat homolog of the barley cold-regulated gene cor14b was studied at various temperatures in frost-sensitive and frost-tolerant wheat genotypes. At 18/15 °C (day/night temperatures) frost-tolerant plants accumulated cor14b mRNAs and expressed COR14b proteins, whereas the sensitive plants did not. This result indicates that the threshold temperature for induction of the wheat cor14b homolog is higher in frost-resistant plants, and allowed us to use this polymorphism in a mapping approach. Studies made with chromosome substitution lines showed that the polymorphism for the threshold induction temperature of the wheat cor14b homolog is controlled by a locus(i) located on chromosome 5A of wheat, while the cor14b gene was mapped in Triticum monococcum on the long arm of chromosome 2Am. The analysis of single chromosome recombinant lines derived from a cross between Chinese Spring/Triticum spelta 5A and Chinese Spring/Cheyenne 5A identified two loci with additive effects that are involved in the genetic control of cor14b mRNA accumulation. The first locus was tightly linked to the marker psr911, while the second one was located between the marker Xpsr2021 and Frost resistance 1 (Fr1).


Journal of Plant Physiology | 2012

Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra

Klára Kosová; Ilja Tom Prášil; Pavel Vítámvás; Petre I. Dobrev; Václav Motyka; Kristýna Floková; Ondřej Novák; Veronika Turečková; Jakub Rolčík; Bedřich Pešek; Alena Trávníčková; Alena Gaudinová; Gábor Galiba; Tibor Janda; Eva Vlasáková; Pavla Prášilová; Radomira Vankova

Hormonal changes accompanying the cold stress (4°C) response that are related to the level of frost tolerance (FT; measured as LT50) and the content of the most abundant dehydrin, WCS120, were compared in the leaves and crowns of the winter wheat (Triticum aestivum L.) cv. Samanta and the spring wheat cv. Sandra. The characteristic feature of the alarm phase (1 day) response was a rapid elevation of abscisic acid (ABA) and an increase of protective proteins (dehydrin WCS120). This response was faster and stronger in winter wheat, where it coincided with the downregulation of bioactive cytokinins and auxin as well as enhanced deactivation of gibberellins, indicating rapid suppression of growth. Next, the ethylene precursor aminocyclopropane carboxylic acid was quickly upregulated. After 3-7 days of cold exposure, plant adaptation to the low temperature was correlated with a decrease in ABA and elevation of growth-promoting hormones (cytokinins, auxin and gibberellins). The content of other stress hormones, i.e., salicylic acid and jasmonic acid, also began to increase. After prolonged cold exposure (21 days), a resistance phase occurred. The winter cultivar exhibited substantially enhanced FT, which was associated with a decline in bioactive cytokinins and auxin. The inability of the spring cultivar to further increase its FT was correlated with maintenance of a relatively higher cytokinin and auxin content, which was achieved during the acclimation period.


Plant Molecular Biology | 2008

Identification of candidate CBF genes for the frost tolerance locus Fr-A m 2 in Triticum monococcum

Andrea K. Knox; Chengxia Li; Attila Vágújfalvi; Gábor Galiba; Eric J. Stockinger; Jorge Dubcovsky

A cluster of eleven CBF genes was recently mapped to the Frost resistance-2 (Fr-Am2) locus on chromosome 5 of diploid wheat (Triticum monococcum) using a cross between frost tolerant accession G3116 and frost sensitive DV92. The Fr-Am2 locus was mapped at the peak of two overlapping quantitative trait loci (QTL), one for frost survival and the other for differential expression of the cold regulated gene COR14b. Seven lines with recombination events within the CBF cluster were used to identify CBF candidate genes for these QTL. The lines carrying the critical recombination events were tested for whole plant frost survival and for differential transcript levels of cold induced COR14b and DHN5 genes. The strongest effect for these traits was associated to the linked TmCBF12, TmCBF14 and TmCBF15 genes, with the G3116 allele conferring improved frost tolerance and higher levels of COR14b and DHN5 transcript at mild cold temperatures (12–15°C) than the DV92 allele. Comparison of CBF protein sequences revealed that the DV92 TmCBF12 protein contains a deletion of five amino acids in the AP2 DNA binding domain. Electrophoretic Mobility Shift Assays (EMSA) confirmed that the protein encoded by this allele cannot bind to the CRT/DRE (C-repeat/dehydration-responsive element) motif present in the promoters of several cold induced genes. A smaller effect on frost tolerance was mapped to the distal group of CBF genes including TmCBF16. Transcript levels of TmCBF16, as well as those of TmCBF12 and TmCBF15 were up-regulated at mild cold temperatures in G3116 but not in DV92. Higher threshold induction temperatures can result in earlier initiation of the cold acclimation process and better resistance to subsequent freezing temperatures. The non-functional TmCBF12 allele in DV92 can also contribute to its lower frost tolerance.

Collaboration


Dive into the Gábor Galiba's collaboration.

Top Co-Authors

Avatar

Gábor Kocsy

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Attila Vágújfalvi

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gabriella Szalai

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

J. Sutka

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Alexandra Soltész

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ákos Boldizsár

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A. F. Bálint

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Livia Simon-Sarkadi

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar

Ildikó Vashegyi

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fruzsina Szira

Hungarian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge