Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zoltán Ujfalusi is active.

Publication


Featured researches published by Zoltán Ujfalusi.


Science Advances | 2015

Contractility parameters of human β-cardiac myosin with the hypertrophic cardiomyopathy mutation R403Q show loss of motor function

Suman Nag; Ruth F. Sommese; Zoltán Ujfalusi; Ariana Combs; Stephen J. Langer; Shirley Sutton; Leslie A. Leinwand; Michael A. Geeves; Kathleen M. Ruppel; James A. Spudich

Force parameters of human β-cardiac myosin with the hypertrophic cardiomyopathy mutation R403Q show loss of molecular motor function. Hypertrophic cardiomyopathy (HCM) is the most frequently occurring inherited cardiovascular disease. It is caused by mutations in genes encoding the force-generating machinery of the cardiac sarcomere, including human β-cardiac myosin. We present a detailed characterization of the most debated HCM-causing mutation in human β-cardiac myosin, R403Q. Despite numerous studies, most performed with nonhuman or noncardiac myosin, there is no consensus about the mechanism of action of this mutation on the function of the enzyme. We use recombinant human β-cardiac myosin and new methodologies to characterize in vitro contractility parameters of the R403Q myosin compared to wild type. We extend our studies beyond pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin. We find that, with pure actin, the intrinsic force generated by R403Q is ~15% lower than that generated by wild type. The unloaded velocity is, however, ~10% higher for R403Q myosin, resulting in a load-dependent velocity curve that has the characteristics of lower contractility at higher external loads compared to wild type. With regulated actin filaments, there is no increase in the unloaded velocity and the contractility of the R403Q myosin is lower than that of wild type at all loads. Unlike that with pure actin, the actin-activated adenosine triphosphatase activity for R403Q myosin with Ca2+-regulated actin filaments is ~30% lower than that for wild type, predicting a lower unloaded duty ratio of the motor. Overall, the contractility parameters studied fit with a loss of human β-cardiac myosin contractility as a result of the R403Q mutation.


Journal of Biological Chemistry | 2012

Myosin and Tropomyosin Stabilize the Conformation of Formin-nucleated Actin Filaments

Zoltán Ujfalusi; Mihály Kovács; Nikolett T. Nagy; Szilvia Barkó; Gábor Hild; András Lukács; Miklós Nyitrai; Beáta Bugyi

Background: The regulation of the conformational dynamics of cellular actin structures is poorly understood. Results: Myosin and tropomyosin stabilize the conformation of formin-nucleated flexible actin filaments. Conclusion: Actin-binding proteins can play a central role in the establishment of the conformational properties of actin filaments. Significance: Our results add to our understanding of the mechanisms regulating the conformational and functional versatility of the actin cytoskeleton. The conformational elasticity of the actin cytoskeleton is essential for its versatile biological functions. Increasing evidence supports that the interplay between the structural and functional properties of actin filaments is finely regulated by actin-binding proteins; however, the underlying mechanisms and biological consequences are not completely understood. Previous studies showed that the binding of formins to the barbed end induces conformational transitions in actin filaments by making them more flexible through long range allosteric interactions. These conformational changes are accompanied by altered functional properties of the filaments. To get insight into the conformational regulation of formin-nucleated actin structures, in the present work we investigated in detail how binding partners of formin-generated actin structures, myosin and tropomyosin, affect the conformation of the formin-nucleated actin filaments using fluorescence spectroscopic approaches. Time-dependent fluorescence anisotropy and temperature-dependent Förster-type resonance energy transfer measurements revealed that heavy meromyosin, similarly to tropomyosin, restores the formin-induced effects and stabilizes the conformation of actin filaments. The stabilizing effect of heavy meromyosin is cooperative. The kinetic analysis revealed that despite the qualitatively similar effects of heavy meromyosin and tropomyosin on the conformational dynamics of actin filaments the mechanisms of the conformational transition are different for the two proteins. Heavy meromyosin stabilizes the formin-nucleated actin filaments in an apparently single step reaction upon binding, whereas the stabilization by tropomyosin occurs after complex formation. These observations support the idea that actin-binding proteins are key elements of the molecular mechanisms that regulate the conformational and functional diversity of actin filaments in living cells.


Biophysical Journal | 2009

Effect of Tropomyosin on Formin-Bound Actin Filaments

Zoltán Ujfalusi; Andrea Vig; Gábor Hild; Miklós Nyitrai

Formins are conservative proteins with important roles in the regulation of the microfilament system in eukaryotic cells. Previous studies showed that the binding of formins to actin made the structure of actin filaments more flexible. Here, the effects of tropomyosin on formin-induced changes in actin filaments were investigated using fluorescence spectroscopic methods. The temperature dependence of the Förster-type resonance energy transfer showed that the formin-induced increase of flexibility of actin filaments was diminished by the binding of tropomyosin to actin. Fluorescence anisotropy decay measurements also revealed that the structure of flexible formin-bound actin filaments was stabilized by the binding of tropomyosin. The stabilizing effect reached its maximum when all binding sites on actin were occupied by tropomyosin. The effect of tropomyosin on actin filaments was independent of ionic strength, but became stronger as the magnesium concentration increased. Based on these observations, we propose that in cells there is a molecular mechanism in which tropomyosin binding to actin plays an important role in forming mechanically stable actin filaments, even in the case of formin-induced rapid filament assembly.


Journal of Photochemistry and Photobiology B-biology | 2010

The effects of formins on the conformation of subdomain 1 in actin filaments.

Zoltán Ujfalusi; Szilvia Barkó; Gábor Hild; Miklós Nyitrai

In this study we investigated the effects of formins on the conformation of actin filaments by using the method of fluorescence quenching. Actin was labelled with IAEDANS at Cys(374) and the quencher was acrylamide. The results showed that formin binding induced structural changes in the subdomain 1 of actin protomers which were reflected by greater quenching constants (K(SV)). Simultaneously the fraction of the fluorophore population accessible for the quencher (alpha) decreased. These observations suggest that the conformational distribution characteristic for the actin protomers became broader after the binding of formins, for which the structural framework was provided by a more flexible protein matrix in the microenvironment of the label. The effects of formins depended on the formin:actin molar ratio, and also on the ionic strength of the medium. These observations are in agreement with previous results and underline the importance of the intramolecular conformational changes induced by formins in the structure of actin filaments.


The Journal of Experimental Biology | 2016

Myosin isoforms and the mechanochemical cross-bridge cycle.

Jonathan Walklate; Zoltán Ujfalusi; Michael A. Geeves

ABSTRACT At the latest count the myosin family includes 35 distinct groups, all of which have the conserved myosin motor domain attached to a neck or lever arm, followed by a highly variable tail or cargo binding region. The motor domain has an ATPase activity that is activated by the presence of actin. One feature of the myosin ATPase cycle is that it involves an association/dissociation with actin for each ATP hydrolysed. The cycle has been described in detail for a large number of myosins from different classes. In each case the cycle is similar, but the balance between the different molecular events in the cycle has been altered to produce a range of very different mechanical activities. Myosin may spend most of the ATPase cycle attached to actin (high duty ratio), as in the processive myosin (e.g. myosin V) or the strain-sensing myosins (e.g. myosin 1c). In contrast, most muscle myosins spend 80% of their ATPase cycle detached from actin. Within the myosin IIs found in human muscle, there are 11 different sarcomeric myosin isoforms, two smooth muscle isoforms as well as three non-muscle isoforms. We have been exploring how the different myosin isoforms have adapted the cross-bridge cycle to generate different types of mechanical activity and how this goes wrong in inherited myopathies. The ideas are outlined here. Summary: Mammals express more than 11 different muscle myosin isoforms. Studies of different isoforms and the effect of mutations in these isoforms illustrate how myosin is adapted for specific functions.


Journal of Thermal Analysis and Calorimetry | 2005

The effect of pH ont he thermal stability of a-actin isoforms

Gábor Papp; Beáta Bugyi; Zoltán Ujfalusi; Sz. Halasi; József Orbán

SummaryThe effect of pH was characterised on the thermal stability of magnesium saturated skeletal and cardiac α-actin isoforms with differential scanning calorimetry (DSC) at pH 7.0 and 8.0. The calorimetric curves were further analysed to calculate the enthalpy and transition entropy changes. The activation energy was also determined to describe the energy consumption of the initiation of the thermal denaturation process. Although the difference in Tmvalues is too small to interpret the difference between the a-actin isoforms, the values of the activation energy indicated that the α-skeletal actin is probably more stable compared to the α-cardiac actin. The difference in the activation energies indicated that lowering the pH can produce a more stable protein matrix in both cases of the isoforms. The larger range of the difference in the values of the activation energies suggested that the α-cardiac actin is probably more sensitive to the change of the pH compared to the α -skeletal actin.


Journal of Biological Chemistry | 2018

Dilated cardiomyopathy myosin mutants have reduced force-generating capacity

Zoltán Ujfalusi; Carlos Vera; Srbolujub M. Mijailovich; Marina Svicevic; Elizabeth Choe Yu; Masataka Kawana; Kathleen M. Ruppel; James A. Spudich; Michael A. Geeves; Leslie A. Leinwand

Dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM) can cause arrhythmias, heart failure, and cardiac death. Here, we functionally characterized the motor domains of five DCM-causing mutations in human β-cardiac myosin. Kinetic analyses of the individual events in the ATPase cycle revealed that each mutation alters different steps in this cycle. For example, different mutations gave enhanced or reduced rate constants of ATP binding, ATP hydrolysis, or ADP release or exhibited altered ATP, ADP, or actin affinity. Local effects dominated, no common pattern accounted for the similar mutant phenotype, and there was no distinct set of changes that distinguished DCM mutations from previously analyzed HCM myosin mutations. That said, using our data to model the complete ATPase contraction cycle revealed additional critical insights. Four of the DCM mutations lowered the duty ratio (the ATPase cycle portion when myosin strongly binds actin) because of reduced occupancy of the force-holding A·M·D complex in the steady state. Under load, the A·M·D state is predicted to increase owing to a reduced rate constant for ADP release, and this effect was blunted for all five DCM mutations. We observed the opposite effects for two HCM mutations, namely R403Q and R453C. Moreover, the analysis predicted more economical use of ATP by the DCM mutants than by WT and the HCM mutants. Our findings indicate that DCM mutants have a deficit in force generation and force-holding capacity due to the reduced occupancy of the force-holding state.


PLOS ONE | 2017

Cardiac leiomodin2 binds to the sides of actin filaments and regulates the ATPase activity of myosin

Dávid Szatmári; Beáta Bugyi; Zoltán Ujfalusi; László Grama; Réka Dudás; Miklós Nyitrai

Leiomodin proteins are vertebrate homologues of tropomodulin, having a role in the assembly and maintenance of muscle thin filaments. Leiomodin2 contains an N-terminal tropomodulin homolog fragment including tropomyosin-, and actin-binding sites, and a C-terminal Wiskott-Aldrich syndrome homology 2 actin-binding domain. The cardiac leiomodin2 isoform associates to the pointed end of actin filaments, where it supports the lengthening of thin filaments and competes with tropomodulin. It was recently found that cardiac leiomodin2 can localise also along the length of sarcomeric actin filaments. While the activities of leiomodin2 related to pointed end binding are relatively well described, the potential side binding activity and its functional consequences are less well understood. To better understand the biological functions of leiomodin2, in the present work we analysed the structural features and the activities of Rattus norvegicus cardiac leiomodin2 in actin dynamics by spectroscopic and high-speed sedimentation approaches. By monitoring the fluorescence parameters of leiomodin2 tryptophan residues we found that it possesses flexible, intrinsically disordered regions. Leiomodin2 accelerates the polymerisation of actin in an ionic strength dependent manner, which relies on its N-terminal regions. Importantly, we demonstrate that leiomodin2 binds to the sides of actin filaments and induces structural alterations in actin filaments. Upon its interaction with the filaments leiomodin2 decreases the actin-activated Mg2+-ATPase activity of skeletal muscle myosin. These observations suggest that through its binding to side of actin filaments and its effect on myosin activity leiomodin2 has more functions in muscle cells than it was indicated in previous studies.


Biochimica et Biophysica Acta | 2016

Large-scale purification and in vitro characterization of the assembly of MreB from Leptospira interrogans.

Szilvia Barkó; Dávid Szatmári; Emőke Bódis; Katalin Türmer; Zoltán Ujfalusi; David Popp; Robert Robinson; Miklós Nyitrai

BACKGROUND Weils syndrome is caused by Leptospira interrogans infections, a Gram negative bacterium with a distinct thin corkscrew cell shape. The molecular basis for this unusual morphology is unknown. In many bacteria, cell wall synthesis is orchestrated by the actin homolog, MreB. METHODS Here we have identified the MreB within the L. interrogans genome and expressed the His-tagged protein product of the synthesized gene (Li-MreB) in Escherichia coli. Li-MreB did not purify under standard nucleotide-free conditions used for MreBs from other species, requiring the continual presence of ATP to remain soluble. Covalent modification of Li-MreB free thiols with Alexa488 produced a fluorescent version of Li-MreB. RESULTS We developed native and denaturing/refolding purification schemes for Li-MreB. The purified product was shown to assemble and disassemble in MgCl2 and KCl dependent manners, as monitored by light scattering and sedimentation studies. The fluorescence spectrum of labeled Li-MreB-Alexa488 showed cation-induced changes in line with an activation process followed by a polymerization phase. The resulting filaments appeared as bundles and sheets under the fluorescence microscope. Finally, since the Li-MreB polymerization was cation dependent, we developed a simple method to measure monovalent cation concentrations within a test case prokaryote, E. coli. CONCLUSIONS We have identified and initially characterized the cation-dependent polymerization properties of a novel MreB from a non-rod shaped bacterium and developed a method to measure cation concentrations within prokaryotes. GENERAL SIGNIFICANCE This initial characterization of Li-MreB will enable future structural determination of the MreB filament from this corkscrew-shaped bacterium.


Biophysical Journal | 2006

Conformational Changes in Actin Filaments Induced by Formin Binding to the Barbed End

Gábor Papp; Beáta Bugyi; Zoltán Ujfalusi; Szilvia Barkó; Gábor Hild; Béla Somogyi; Miklós Nyitrai

Collaboration


Dive into the Zoltán Ujfalusi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leslie A. Leinwand

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge