Gábor Maász
University of Pécs
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gábor Maász.
Pathology & Oncology Research | 2012
Tamás Járai; Gábor Maász; András Burián; Agnes Bona; Eva Jambor; Imre Gerlinger; László Márk
The 5-year survival rates for cases of head and neck squamous cell carcinoma (HNSCC) are only some 60%, mainly because 20%–40% of the patients develop a local relapse in the same or an adjacent anatomic region, even when the surgical margins are histologically tumour-free. Tumours are often discovered in an advanced stage because of the lack of specific symptoms and the diagnostic difficulties. The more advanced the stage of the tumour, the more invasive the diagnostic and treatment interventions needed. An early molecular diagnosis is therefore of vital importance in order to increase the survival rate. The aim of this study was to develop an efficient rapid and sensitive mass spectrometric method for the detection of differentially expressed proteins as tumour-specific biomarkers in saliva from HNSCC patients. Whole saliva samples were collected from patients with HNSCC and from healthy subjects. The proteins were profiled by using SDS PAGE, MALDI TOF/TOF mass spectrometry and the Mascot database search engine. Several potential tumour markers were identified, including annexin A1, beta- and gamma-actin, cytokeratin 4 and 13, zinc finger proteins and P53 pathway proteins. All of these proteins play a proven role in tumour genesis, and have not been detected previously in saliva. Salivary proteomics is a non-invasive specific method for cancer diagnosis and follow-up treatment. It provides facilities for the readily reproducible and reliable detection of tumours in early stages.
SpringerPlus | 2015
Dora Reglodi; Gábor Maász; Zsolt Pirger; Adam Rivnyak; Dorottya Balogh; Adel Jungling; Balazs D. Fulop; László Márk; Andrea Tamas
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with diverse occurrence and functions. One of the most well-known effects of PACAP is its strong neuroprotective effect. In this presentation we give an insight into recently described neurochemical changes induced by PACAP or altered by PACAP the lack of it. In an invertebrate model for Parkinson’s disease we found that PACAP effectively counteracts the dopamine-decreasing effect of rotenone, a mitochondrial neurotoxin. Similarly, in a 6-hydroxydopamine-induced rat model of Parkinson’s disease, we found that PACAP effectively increases dopamine levels. Furthermore, our proteomics analysis shows that PACAP treatment also counteracts the 6-OHDA-induced decrease in PARK-7 protein, effective against oxidative stress. Studying the role of endogenous PACAP, we found that PACAP-deficient mice show higher susceptibility to toxic agents causing degeneration of the substantia nigra dopaminergic neurons. Using proteomic analysis we revealed that the expression of numerous proteins is altered in the mesencephalon and striatum of knockout mice. Among the altered proteins, several are involved in metabolic processes, energy homeostasis, and structural integrity. ATP-synthase and tubulin beta-2A were expressed more strongly in PACAP-knockout mice. In contrast, the expression of more peptides/proteins markedly decreased in knockout mice, like pyruvate kinase, fructose biphosphate aldolase-A, glutathione S-transferase, peptidyl propyl cis-trans isomerase-A, gamma enolase, beta-synuclein and aspartate amino transferase. The altered expression of these proteins might partially account for the decreased antioxidant, cytoprotective and detoxifying capacity of PACAP-deficient mice. The described changes may provide further explanation for the neuroprotective potency of PACAP.
Brain Research | 2014
Miklós Sárvári; Levente Deli; Pál Kocsis; László Márk; Gábor Maász; Erik Hrabovszky; Imre Kalló; Dávid Gajári; Csaba Vastagh; Balazs Sumegi; Károly Tihanyi; Zsolt Liposits
The mesocortical dopaminergic pathway projecting from the ventral tegmental area (VTA) to the prefrontal cortex (PFC) contributes to the processing of reward signals. This pathway is regulated by gonadal steroids including estradiol. To address the putative role of estradiol and isotype-selective estrogen receptor (ER) agonists in the regulation of the rodent mesocortical system, we combined fMRI, HPLC-MS and qRT-PCR techniques. In fMRI experiments adult, chronically ovariectomized rats, treated with either vehicle, estradiol, ERα agonist 16α-lactone-estradiol (LE2) or ERβ agonist diarylpropionitrile (DPN), received a single dose of d-amphetamine-sulphate (10mg/kg, i.p.) and BOLD responses were monitored in the VTA and the PFC. Ovariectomized rats showed no significant response to amphetamine. In contrast, the VTA of ER agonist-substituted ovariectomized rats showed robust amphetamine-evoked BOLD increases. The PFC of estradiol-replaced animals was also responsive to amphetamine. Mass spectroscopic analysis of dopamine and its metabolites revealed a two-fold increase in both dopamine and 3,4-dihydroxyphenylacetic acid content of the PFC in estradiol-replaced animals compared to ovariectomized controls. qRT-PCR studies revealed upregulation of dopamine transporter and dopamine receptor in the VTA and PFC, respectively, of ER agonist-treated ovariectomized animals. Collectively, the results indicate that E2 and isotype-selective ER agonists can powerfully modulate the responsiveness of the mesocortical dopaminergic system, increase the expression of key genes related to dopaminergic neurotransmission and augment the dopamine content of the PFC. In a broader sense, the findings support the concept that the manifestation of reward signals in the PFC is dependent on the actual estrogen milieu of the brain.
International Journal of Legal Medicine | 2013
Zoltan Patonai; Gábor Maász; Péter Avar; Janos Schmidt; Istvan Bajnoczky; László Márk
The fast, high-throughput distinction between paleoanthropological remains and recent forensic/clinical bone samples is of vital importance in the field of medicolegal science. In this paper, a novel screening method has been described, using the crystallinity index (C.I.) and carbonate–phosphate index (C/P) as a means to distinguish between archeological and forensic anthropological skeletal findings. According to the Fourier transform infrared spectroscopy analyses, the archeological bone samples are characterized by a range of C.I. between 2.84 and 3.78 and by low C/P values of 0.10–0.33, while the C.I. and C/P ranges of forensic skeletal remains are 2.55–3.18 and 0.38–0.88, respectively. Significant (p < 0.05) changes were observed in C/P as well as C.I. values between the groups of forensic and archeological skeletal samples. The suggested dating method needs only a few milligramms of bone tissue; thus, it can be extremely useful for distiguishing ancient and recent bone fragments.
Journal of Molecular Neuroscience | 2012
R. Brubel; Peter Kiss; András Vincze; A. Varga; A. Varnagy; J. Bodis; László Márk; Eva Jambor; Gábor Maász; Hitoshi Hashimoto; Z. Helyes; Gábor K. Tóth; Andrea Tamas; Miklós Koppán; Dora Reglodi
Pituitary adenylate cyclase activating polypeptide (PACAP), a neuropeptide with diverse effects, was originally isolated as a hypothalamo-hypophyseal peptide. Subsequent studies showed highest levels of PACAP in the testis after the brain, suggesting that it influences the development and functioning of spermatozoa. Indeed, it has been proven that PACAP has an effect on spermatogenesis, both locally and via influencing the hypothalamo-hypophyseal–gonadal axis. The aim of the present study was to determine whether PACAP has an effect on human sperm motility and whether it is present in the human seminal fluid. Furthermore, the sperm head morphology was studied in mice lacking endogenous PACAP. Human samples were obtained from healthy adult volunteers and andrological patients. The effects of PACAP on the motility of human sperm cells were investigated using a computer aided sperm analysis system. In cases where the motility was lower, addition of PACAP to the samples increased the motility and the ratio of rapid progressive and medium progressive sperm motility groups. The presence of PACAP could not be detected in human seminal fluid samples by means of mass spectrometry. Investigating sperm head morphology with routine histology in PACAP deficient mice revealed that both the longitudinal and transverse diameters were significantly lower in PACAP deficient mice, without marked difference in the shape, as revealed by scanning electron microscopy.
Analytical and Bioanalytical Chemistry | 2009
Gergely Montskó; Alexandra Vaczy; Gábor Maász; Erzsébet Mernyák; Éva Frank; Csaba Bay; Zalán Kádár; Róbert Ohmacht; János Wölfling; László Márk
Neutral steroid hormones are currently analyzed by gas or liquid chromatography/mass spectrometry based methods. Most of the steroid compounds, however, lack volatility and do not contain polar groups, which results in inadequate chromatographic behavior and low ionization efficiency. Derivatization of the steroids to form more volatile, thermostable, and charged products solves this difficulty, but the derivatization of compounds with unknown chemical moieties is not an easy task. In this study, a rapid, high-throughput, sensitive matrix-assisted laser desorption/ionization time-of-flight mass spectrometry method is described using C70 fullerene as a matrix compound. The application of the method is demonstrated for five general sex steroids and for synthetic steroid compounds in both negative and positive ionization modes.
PLOS ONE | 2014
Agnes Bona; Zoltán Pápai; Gábor Maász; Gábor A. Tóth; Eva Jambor; Janos Schmidt; Csaba Toth; Csilla Farkas; László Márk
Osteosarcoma is the most common primary malignant tumor of bone usually occurring in young adolescent and children. This disease has a poor prognosis, because of the metastases in the period of tumor progression, which are usually developed previous to the clinical diagnosis. In this paper, a 2000-year-old ancient bone remain with osteogenic sarcoma was analyzed searching for tumor biomarkers which are closely related to this disease. After a specific extraction SDS-PAGE gel electrophoresis followed by tryptic digestion was performed. After the digestion the samples were measured using MALDI TOF/TOF MS. Healthy bone samples from same archaeological site were used as control samples. Our results show that in the pathological skeletal remain several well known tumor biomarkers are detected such as annexin A10, BCL-2-like protein, calgizzarin, rho GTPase-activating protein 7, HSP beta-6 protein, transferrin and vimentin compared to the control samples. The identified protein biomarkers can be useful in the discovery of malignant bone lesions such as osteosarcoma in the very early stage of the disease from paleoanthropological remains.
Journal of Molecular Neuroscience | 2014
Gábor Maász; Zsolt Pirger; Dora Reglodi; D. Petrovics; Janos Schmidt; Peter Kiss; Adam Rivnyak; Hitoshi Hashimoto; Péter Avar; Eva Jambor; Andrea Tamas; Balázs Gaszner; László Márk
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a widespread neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. The diverse biological actions provide the background for the variety of deficits observed in mice lacking endogenous PACAP. PACAP-deficient mice display several abnormalities, such as sudden infant death syndrome (SIDS)-like phenotype, decreased cell protection, and increased risk of Parkinson’s disease. However, the molecular and proteomic background is still unclear. Therefore, our aim was to investigate the differences in peptide and protein composition in the brains of PACAP-deficient and wild-type mice using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometric (MS)-based proteomic analysis. Brains from PACAP-deficient mice were removed, and different brain areas (cortex, hippocampus, diencephalon, mesencephalon, brainstem, and cerebellum) were separated. Brain pieces were weighed, homogenized, and further processed for electrophoretic analysis. Our results revealed several differences in diencephalon and mesencephalon. The protein bands of interest were cut from the gel, samples were digested with trypsin, and the tryptic peptides were measured by matrix-assisted laser desorption ionization time of flight (MALDI TOF) MS. Results were analyzed by MASCOT Search Engine. Among the altered proteins, several are involved in metabolic processes, energy homeostasis, and structural integrity. ATP-synthase and tubulin beta-2A were expressed more strongly in PACAP-knockout mice. In contrast, the expression of more peptides/proteins markedly decreased in knockout mice, like pyruvate kinase, fructose biphosphate aldolase-A, glutathione S-transferase, peptidyl propyl cis-trans isomerase-A, gamma enolase, and aspartate amino transferase. The altered expression of these enzymes might partially account for the decreased antioxidant and detoxifying capacity of PACAP-deficient mice accompanying the increased vulnerability of these animals. Our results provide novel insight into the altered biochemical processes in mice lacking endogenous PACAP.
Disease Models & Mechanisms | 2017
Gábor Maász; Zita Zrínyi; Dora Reglodi; Dora Petrovics; Adam Rivnyak; Tibor Kiss; Adel Jungling; Andrea Tamas; Zsolt Pirger
ABSTRACT Pituitary adenylate cyclase-activating polypeptide (PACAP) rescues dopaminergic neurons from neurodegeneration and improves motor changes induced by 6-hydroxy-dopamine (6-OHDA) in rat parkinsonian models. Recently, we investigated the molecular background of the neuroprotective effect of PACAP in dopamine (DA)-based neurodegeneration using rotenone-induced snail and 6-OHDA-induced rat models of Parkinsons disease. Behavioural activity, monoamine (DA and serotonin), metabolic enzyme (S-COMT, MB-COMT and MAO-B) and PARK7 protein concentrations were measured before and after PACAP treatment in both models. Locomotion and feeding activity were decreased in rotenone-treated snails, which corresponded well to findings obtained in 6-OHDA-induced rat experiments. PACAP was able to prevent the behavioural malfunctions caused by the toxins. Monoamine levels decreased in both models and the decreased DA level induced by toxins was attenuated by ∼50% in the PACAP-treated animals. In contrast, PACAP had no effect on the decreased serotonin (5HT) levels. S-COMT metabolic enzyme was also reduced but a protective effect of PACAP was not observed in either of the models. Following toxin treatment, a significant increase in MB-COMT was observed in both models and was restored to normal levels by PACAP. A decrease in PARK7 was also observed in both toxin-induced models; however, PACAP had a beneficial effect only on 6-OHDA-treated animals. The neuroprotective effect of PACAP in different animal models of Parkinsons disease is thus well correlated with neurotransmitter, enzyme and protein levels. The models successfully mimic several, but not all etiological properties of the disease, allowing us to study the mechanisms of neurodegeneration as well as testing new drugs. The rotenone and 6-OHDA rat and snail in vivo parkinsonian models offer an alternative method for investigation of the molecular mechanisms of neuroprotective agents, including PACAP. Summary: PACAP has a neuroprotective effect in different toxin-induced rat and snail parkinsonian models, acting partially through the same mechanisms.
Journal of Pharmaceutical and Biomedical Analysis | 2015
Mónika Kuzma; Krisztina Fodor; Gábor Maász; Péter Avar; Gyula Mózsik; Tibor Past; E. Fischer; Pál Perjési
A sensitive and selective reverse-phase high performance liquid chromatographic method with fluorescence detection has been developed for determination of capsaicin (8-methyl-N-vanillyl-(trans)-6-nonenamid) and dihydrocapsaicin (8-methyl-N-vanillylnonanamide) in samples generated in rat small intestine luminal perfusion experiments. The experiments were designed to study the biotransformation of capsaicinoids in the small intestine in the rat. The chromatographic separation was performed at room temperature on a ZORBAX Eclipse(®) XDB-C8 column using isocratic elution with a mobile phase consisting 0.05M orthophosphoric acid solution and acetonitrile (60:40, v/v; pH 3.0) with a flow rate of 1.5mL/min. Fluorescence detection was performed at excitation and emission wavelengths of 230 and 323nm, respectively. The method was evaluated for a number of validation characteristics (accuracy, repeatability and intermediate precision, limit of detection, limit of quantification and calibration range). The limit of detection (LOD) was 50ng/mL and the limit of quantification (LOQ) was 100ng/mL for both capsaicin and dihydrocapsaicin reference standards dissolved in blank perfusate. The method was successfully applied for investigation of intestinal absorption of capsaicin and dihydrocapsaicin while 30μg/mL standardized Capsicum extract - containing capsaicin and dihydrocapsaicin - was luminally perfused for a 90min period. The structure of the glucuronide metabolites of capsaicin and dihydrocapsaicin appeared in the perfusate was identified by mass spectrometry.