Zsolt Pirger
Hungarian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Zsolt Pirger.
Current Biology | 2008
Eugeny S. Nikitin; Dimitris V. Vavoulis; Ildikó Kemenes; Vincenzo Marra; Zsolt Pirger; Maximilian Michel; Jianfeng Feng; Michael O'Shea; Paul R. Benjamin; Gyoergy Kemenes
Although synaptic plasticity is widely regarded as the primary mechanism of memory [1], forms of nonsynaptic plasticity, such as increased somal or dendritic excitability or membrane potential depolarization, also have been implicated in learning in both vertebrate and invertebrate experimental systems [2-7]. Compared to synaptic plasticity, however, there is much less information available on the mechanisms of specific types of nonsynaptic plasticity involved in well-defined examples of behavioral memory. Recently, we have shown that learning-induced somal depolarization of an identified modulatory cell type (the cerebral giant cells, CGCs) of the snail Lymnaea stagnalis encodes information that enables the expression of long-term associative memory [8]. The Lymnaea CGCs therefore provide a highly suitable experimental system for investigating the ionic mechanisms of nonsynaptic plasticity that can be linked to behavioral learning. Based on a combined behavioral, electrophysiological, immunohistochemical, and computer simulation approach, here we show that an increase of a persistent sodium current of this neuron underlies its delayed and persistent depolarization after behavioral single-trial classical conditioning. Our findings provide new insights into how learning-induced membrane level changes are translated into a form of long-lasting neuronal plasticity already known to contribute to maintained adaptive modifications at the network and behavioral level [8].
Journal of Molecular Neuroscience | 2008
Zsolt Pirger; József Németh; L. Hiripi; Gábor K. Tóth; Peter Kiss; Andrea Lubics; Andrea Tamas; L. Hernádi; Tibor Kiss; Dora Reglodi
Pituitary adenylate cyclase activating polypeptide (PACAP) shows a remarkable sequence similarity among species and several studies provide evidence that the functions of PACAP have also been conserved among vertebrate species. Relatively little is known about its presence and functions in invertebrates. The aim of the present study was to investigate whether the well-known anti-apoptotic effect of PACAP can also be demonstrated in invertebrates. This effect was studied in the salivary gland of a molluscan species, Helix pomatia. In this work, we first showed the presence of PACAP-like immunoreactivity in the Helix salivary gland by means of immunohistochemistry. Radioimmunoassay measurements showed that PACAP38-like immunoreactivity dominated in the salivary gland of both active and inactive snails and its concentration was higher in active than in inactive animals in contrast to PACAP27-like immunoreactivity, which did not show activity-dependent changes. PACAP induced a significant elevation of cAMP level in salivary gland extracts. Application of apoptosis-inducing agents, dopamine and colchicine, led to a marked increase in the number of terminal uridine deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive apoptotic cells in the salivary gland, which was significantly attenuated by PACAP treatment. In a similar manner, the number of caspase-positive cells was reduced after co-application of dopamine and PACAP. Taken together, the data indicate that PACAP activates cAMP in a molluscan species and we show, for the first time, that PACAP is anti-apoptotic in the invertebrate Helix pomatia.
SpringerPlus | 2015
Dora Reglodi; Gábor Maász; Zsolt Pirger; Adam Rivnyak; Dorottya Balogh; Adel Jungling; Balazs D. Fulop; László Márk; Andrea Tamas
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with diverse occurrence and functions. One of the most well-known effects of PACAP is its strong neuroprotective effect. In this presentation we give an insight into recently described neurochemical changes induced by PACAP or altered by PACAP the lack of it. In an invertebrate model for Parkinson’s disease we found that PACAP effectively counteracts the dopamine-decreasing effect of rotenone, a mitochondrial neurotoxin. Similarly, in a 6-hydroxydopamine-induced rat model of Parkinson’s disease, we found that PACAP effectively increases dopamine levels. Furthermore, our proteomics analysis shows that PACAP treatment also counteracts the 6-OHDA-induced decrease in PARK-7 protein, effective against oxidative stress. Studying the role of endogenous PACAP, we found that PACAP-deficient mice show higher susceptibility to toxic agents causing degeneration of the substantia nigra dopaminergic neurons. Using proteomic analysis we revealed that the expression of numerous proteins is altered in the mesencephalon and striatum of knockout mice. Among the altered proteins, several are involved in metabolic processes, energy homeostasis, and structural integrity. ATP-synthase and tubulin beta-2A were expressed more strongly in PACAP-knockout mice. In contrast, the expression of more peptides/proteins markedly decreased in knockout mice, like pyruvate kinase, fructose biphosphate aldolase-A, glutathione S-transferase, peptidyl propyl cis-trans isomerase-A, gamma enolase, beta-synuclein and aspartate amino transferase. The altered expression of these proteins might partially account for the decreased antioxidant, cytoprotective and detoxifying capacity of PACAP-deficient mice. The described changes may provide further explanation for the neuroprotective potency of PACAP.
Journal of Molecular Neuroscience | 2010
Zsolt Pirger; Zita László; L. Hiripi; L. Hernádi; Gábor K. Tóth; Andrea Lubics; Dora Reglodi; György Kemenes; László Márk
PACAP is a highly conserved adenylate cyclase (AC) activating polypeptide, which, along with its receptors (PAC1-R, VPAC1, and VPAC2), is expressed in both vertebrate and invertebrate nervous systems. In vertebrates, PACAP has been shown to be involved in associative learning, but it is not known if it plays a similar role in invertebrates. To prepare the way for a detailed investigation into the possible role of PACAP and its receptors in a suitable invertebrate model of learning and memory, here, we undertook a study of their expression and biochemical role in the central nervous system of the pond snail Lymnaea stagnalis. Lymnaea is one of the best established invertebrate model systems to study the molecular mechanisms of learning and memory, including the role of cyclic AMP-activated signaling mechanisms, which crucially depend on the learning-induced activation of AC. However, there was no information available on the expression of PACAP and its receptors in sensory structures and central ganglia of the Lymnaea nervous system known to be involved in associative learning or whether or not PACAP can actually activate AC in these ganglia. Here, using matrix-assisted laser desorption ionization time of flight (MALDI-TOF) and immunohistochemistry, we established the presence of PACAP-like peptides in the cerebral ganglia and the lip region of Lymnaea. The MALDI-TOF data indicated an identity with mammalian PACAP-27 and the presence of a squid-like PACAP-38 highly homologous to vertebrate PACAP-38. We also showed that PACAP, VIP, and maxadilan stimulated the synthesis of cAMP in Lymnaea cerebral ganglion homogenates and that this effect was blocked by the appropriate general and selective PACAP receptor antagonists.
Neuroscience | 2008
L. Hernádi; Zsolt Pirger; Tamás Kiss; József Németh; László Márk; Peter Kiss; Andrea Tamas; Andrea Lubics; Gábor K. Tóth; Seiji Shioda; Dora Reglodi
The aim of this study was to show the presence, distribution and function of the pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors in the CNS and peripheral nervous system of the mollusk, Helix pomatia. PACAP-like and pituitary adenylate cyclase activating polypeptide receptor (PAC1-R)-like immunoreactivity was abundant both in the CNS and the peripheral nervous system of the snail. In addition several non-neuronal cells also revealed PACAP-like immunoreactivity. In inactive animals labeled cell bodies were mainly found and in the neuropile of active animals dense immunostained fiber system was additionally detected suggesting that expression of PACAP-like peptide was affected by the behavioral state of the animal. RIA measurements revealed the existence of both forms of PACAP in the CNS where the 27 amino acid form was found to be dominant. The concentration of PACAP27 was significantly higher in samples from active animals supporting the data obtained by immunohistochemistry. In Western blot experiments PACAP27 and PACAP38 antibodies specifically labeled protein band at 4.5 kDa both in rat and snail brain homogenates, and additionally an approximately 14 kDa band in snail. The 4.5 kDa protein corresponds to PACAP38 and the 14 kDa protein corresponds to the preproPACAP or to a PACAP-like peptide having larger molecular weight than mammalian PACAP38. In matrix-assisted laser desorption ionization time of flight (MALDI TOF) measurements fragments of PACAP38 were identified in brain samples suggesting the presence of a large molecular weight peptide in the snail. Applying antibodies developed against the PACAP receptor PAC1-R, immunopositive stained neurons and a dense network of fibers were identified in each of the ganglia. In electrophysiological experiments, extracellular application of PACAP27 and PACAP38 transiently depolarized or increased postsynaptic activity of neurons expressing PAC1-R. In several neurons PACAP elicited a long lasting hyperpolarization which was eliminated after 1.5 h continuous washing. Taken together, these results indicate that PACAP may have significant role in a wide range of basic physiological functions in snail.
Analyst | 2013
Bindesh Shrestha; Robert Javonillo; John R. Burns; Zsolt Pirger; Akos Vertes
Direct mass spectrometric analysis of animal tissues is an emerging field enabled by recent developments in ambient ion sources. Label-free in situ analysis of metabolites, lipids, and peptides/proteins from intact tissues in whole fish specimens of different gender and age were performed by laser ablation electrospray ionization (LAESI) mass spectrometry (MS). Hypertrophied glandular tissue (gill gland) of adult male Aphyocharax anisitsi (bloodfin tetra) was compared with gill tissues in females of the same species. Comparison of a large number of sample-specific ions was aided by a multivariate statistical method based on orthogonal projections to latent structures discriminant analysis. More than 200 different ions were detected in the mass spectra corresponding to primary metabolites, hormones, lipids and peptides/proteins. The gill tissues of the sexually mature males exhibited multiply charged ions in the 6+ to 10+ charge states corresponding to a protein with a molecular weight of 11 380 Da. This protein was present only in the mature male gill glands but absent in the corresponding area of the female and immature male specimens. An additional nine proteins were detected by LAESI-MS in both the male and female gill tissues.
Biology of the Cell | 2009
Zsolt Pirger; Boglarka Racz; Tibor Kiss
Background information. PCD (programmed cell death) is a common mechanism to remove unwanted and excessive cells from organisms. In several exocrine cell types, PCD mode of release of secretory products has been reported. The molecular mechanism of the release, however, is largely unknown. Our aim was to study the molecular mechanism of saliva release from cystic cells, the specific cell type of snail SGs (salivary glands).
Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2014
Zsolt Pirger; Souvik Naskar; Zita László; György Kemenes; Dóra Reglődi; Ildikó Kemenes
With the increase of life span, nonpathological age-related memory decline is affecting an increasing number of people. However, there is evidence that age-associated memory impairment only suspends, rather than irreversibly extinguishes, the intrinsic capacity of the aging nervous system for plasticity (1). Here, using a molluscan model system, we show that the age-related decline in memory performance can be reversed by administration of the pituitary adenylate cyclase activating polypeptide (PACAP). Our earlier findings showed that a homolog of the vertebrate PACAP38 and its receptors exist in the pond snail (Lymnaea stagnalis) brain (2), and it is both necessary and instructive for memory formation after reward conditioning in young animals (3). Here we show that exogenous PACAP38 boosts memory formation in aged Lymnaea, where endogenous PACAP38 levels are low in the brain. Treatment with insulin-like growth factor-1, which in vertebrates was shown to transactivate PACAP type I (PAC1) receptors (4) also boosts memory formation in aged pond snails. Due to the evolutionarily conserved nature of these polypeptides and their established role in memory and synaptic plasticity, there is a very high probability that they could also act as “memory rejuvenating” agents in humans.
Neuropeptides | 2010
Zsolt Pirger; Andrea Lubics; Dora Reglodi; Zita László; László Márk; Tamás Kiss
Terrestrial snails are able to transform themselves into inactivity ceasing their behavioral activity under unfavorable environmental conditions. In the present study, we report on the activity-dependent changes of the peptide and/or polypeptide profile in the brain and hemolymph of the snail, Helix pomatia, using MALDI TOF and quadrupole mass spectrometry. The present data indicate that the snails respond to low temperature by increasing or decreasing the output of selected peptides. Average mass spectra of the brain and hemolymph revealed numerous peaks predominantly present during the active state (19 and 10 peptides/polypeptides, respectively), while others were observed only during hibernation (11 and 13). However, there were peptides and/or polypeptides or their fragments present irrespective of the activity states (49 and 18). The intensity of fourteen peaks that correspond to previously identified neuropeptides varied in the brain of active snails compared to those of hibernating animals. Among those the intensity of eight peptides increased significantly in active animals while in hibernated animals the intensity of another six peptides increased significantly. A new peptide or peptide fragment at m/z 1110.7 was identified in a brain of the snail with the following suggested amino acid sequence: GSGASGSMPATTS. This peptide was found to be more abundant in active animals because the intensity of the peptide was significantly higher compared to hibernating animals. In summary, our results revealed substantial differences in the peptide/polypeptide profile of the brain and hemolymph of active and hibernating snails suggesting a possible contribution of peptides in the process of hibernation.
Current Biology | 2014
Zsolt Pirger; Michael Crossley; Zita László; Souvik Naskar; György Kemenes; Michael O’Shea; Paul R. Benjamin; Ildikó Kemenes
Summary Recent studies of behavioral choice support the notion that the decision to carry out one behavior rather than another depends on the reconfiguration of shared interneuronal networks [1]. We investigated another decision-making strategy, derived from the classical ethological literature [2, 3], which proposes that behavioral choice depends on competition between autonomous networks. According to this model, behavioral choice depends on inhibitory interactions between incompatible hierarchically organized behaviors. We provide evidence for this by investigating the interneuronal mechanisms mediating behavioral choice between two autonomous circuits that underlie whole-body withdrawal [4, 5] and feeding [6] in the pond snail Lymnaea. Whole-body withdrawal is a defensive reflex that is initiated by tactile contact with predators. As predicted by the hierarchical model, tactile stimuli that evoke whole-body withdrawal responses also inhibit ongoing feeding in the presence of feeding stimuli. By recording neurons from the feeding and withdrawal networks, we found no direct synaptic connections between the interneuronal and motoneuronal elements that generate the two behaviors. Instead, we discovered that behavioral choice depends on the interaction between two unique types of interneurons with asymmetrical synaptic connectivity that allows withdrawal to override feeding. One type of interneuron, the Pleuro-Buccal (PlB), is an extrinsic modulatory neuron of the feeding network that completely inhibits feeding when excited by touch-induced monosynaptic input from the second type of interneuron, Pedal-Dorsal12 (PeD12). PeD12 plays a critical role in behavioral choice by providing a synaptic pathway joining the two behavioral networks that underlies the competitive dominance of whole-body withdrawal over feeding.