Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriel Cornilescu is active.

Publication


Featured researches published by Gabriel Cornilescu.


Journal of Biomolecular NMR | 2009

TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts

Yang Shen; Frank Delaglio; Gabriel Cornilescu; Ad Bax

NMR chemical shifts in proteins depend strongly on local structure. The program TALOS establishes an empirical relation between 13C, 15N and 1H chemical shifts and backbone torsion angles ϕ and ψ (Cornilescu et al. J Biomol NMR 13 289–302, 1999). Extension of the original 20-protein database to 200 proteins increased the fraction of residues for which backbone angles could be predicted from 65 to 74%, while reducing the error rate from 3 to 2.5%. Addition of a two-layer neural network filter to the database fragment selection process forms the basis for a new program, TALOS+, which further enhances the prediction rate to 88.5%, without increasing the error rate. Excluding the 2.5% of residues for which TALOS+ makes predictions that strongly differ from those observed in the crystalline state, the accuracy of predicted ϕ and ψ angles, equals ±13°. Large discrepancies between predictions and crystal structures are primarily limited to loop regions, and for the few cases where multiple X-ray structures are available such residues are often found in different states in the different structures. The TALOS+ output includes predictions for individual residues with missing chemical shifts, and the neural network component of the program also predicts secondary structure with good accuracy.


Nature Structural & Molecular Biology | 2004

U2–U6 RNA folding reveals a group II intron-like domain and a four-helix junction

Dipali G. Sashital; Gabriel Cornilescu; Samuel E. Butcher

Intron removal in nuclear precursor mRNA is catalyzed through two transesterification reactions by a multi-megaDalton ribonucleoprotein machine called the spliceosome. A complex between U2 and U6 small nuclear RNAs is a core component of the spliceosome. Here we present an NMR structural analysis of a protein-free U2–U6 complex from Saccharomyces cerevisiae. The observed folding of the U2–U6 complex is a four-helix junction, in which the catalytically important AGC triad base-pairs only within U6 and not with U2. The base-pairing of the AGC triad extends the U6 intramolecular stem-loop (U6 ISL), and the NMR structure of this extended U6 ISL reveals structural similarities with domain 5 of group II self-splicing introns. The observed conformation of the four-helix junction could be relevant to the first, but not the second, step of splicing and may help to position the U6 ISL adjacent to the 5′ splice site.


Nature | 2010

Structural basis for the photoconversion of a phytochrome to the activated Pfr form

Andrew T. Ulijasz; Gabriel Cornilescu; Claudia C. Cornilescu; Junrui Zhang; Mario Rivera; John L. Markley; Richard D. Vierstra

Phytochromes are a collection of bilin-containing photoreceptors that regulate numerous photoresponses in plants and microorganisms through their ability to photointerconvert between a red-light-absorbing, ground state (Pr) and a far-red-light-absorbing, photoactivated state (Pfr). Although the structures of several phytochromes as Pr have been determined, little is known about the structure of Pfr and how it initiates signalling. Here we describe the three-dimensional solution structure of the bilin-binding domain as Pfr, using the cyanobacterial phytochrome from Synechococcus OSB′. Contrary to predictions, light-induced rotation of the A pyrrole ring but not the D ring is the primary motion of the chromophore during photoconversion. Subsequent rearrangements within the protein then affect intradomain and interdomain contact sites within the phytochrome dimer. On the basis of our models, we propose that phytochromes act by propagating reversible light-driven conformational changes in the bilin to altered contacts between the adjacent output domains, which in most phytochromes direct differential phosphotransfer.


Protein Science | 2005

Solution structure of a late embryogenesis abundant protein (LEA14) from Arabidopsis thaliana, a cellular stress‐related protein

Shanteri Singh; Claudia C. Cornilescu; Robert C. Tyler; Gabriel Cornilescu; Marco Tonelli; Min S. Lee; John L. Markley

We report the three‐dimensional structure of a late embryogenesis abundant (LEA) protein from Arabidopsis thaliana gene At1g01470.1. This protein is a member of Pfam cluster PF03168, and has been classified as a LEA14 protein. LEA proteins are expressed under conditions of cellular stress, such as desiccation, cold, osmotic stress, and heat. The structure, which was determined by NMR spectroscopy, revealed that the At1g01470.1 protein has an αβ‐fold consisting of one α‐helix and seven β‐strands that form two antiparallel β‐sheets. The closest structural homologs were discovered to be fibronectin Type III domains, which have <7% sequence identity. Because fibronectins from animal cells have been shown to be involved in cell adhesion, cell motility, wound healing, and maintenance of cell shape, it is interesting to note that in plants wounding or stress results in the overexpression of a protein with fibronectin Type III structural features.


Journal of Biological Chemistry | 2009

Cyanochromes are blue/green light photoreversible photoreceptors defined by a stable double cysteine linkage to a phycoviolobilin-type chromophore.

Andrew T. Ulijasz; Gabriel Cornilescu; David von Stetten; Claudia C. Cornilescu; Francisco Velazquez Escobar; Junrui Zhang; Robert J. Stankey; Mario Rivera; Peter Hildebrandt; Richard D. Vierstra

Phytochromes are a collection of bilin-containing photoreceptors that regulate a diverse array of processes in microorganisms and plants through photoconversion between two stable states, a red light-absorbing Pr form, and a far red light-absorbing Pfr form. Recently, a novel set of phytochrome-like chromoproteins was discovered in cyanobacteria, designated here as cyanochromes, that instead photoconvert between stable blue and green light-absorbing forms Pb and Pg, respectively. Here, we show that the distinctive absorption properties of cyanochromes are facilitated through the binding of phycocyanobilin via two stable cysteine-based thioether linkages within the cGMP phosphodiesterase/adenyl cyclase/FhlA domain. Absorption, resonance Raman and infrared spectroscopy, and molecular modeling of the Te-PixJ GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA) domain assembled with phycocyanobilin are consistent with attachments to the C31 carbon of the ethylidene side chain and the C4 or C5 carbons in the A–B methine bridge to generate a double thioether-linked phycoviolobilin-type chromophore. These spectroscopic methods combined with NMR data show that the bilin is fully protonated in the Pb and Pg states and that numerous conformation changes occur during Pb → Pg photoconversion. Also identified were a number of photochromically inactive mutants with strong yellow or red fluorescence that may be useful for fluorescence-based cell biological assays. Phylogenetic analyses detected cyanochromes capable of different signaling outputs in a wide range of cyanobacterial species. One unusual case is the Synechocystis cyanochrome Etr1 that also binds ethylene, suggesting that it works as a hybrid receptor to simultaneously integrate light and hormone signals.


Journal of the American Chemical Society | 2010

The Impact of Hydrogen Bonding on Amide 1H Chemical Shift Anisotropy Studied by Cross-Correlated Relaxation and Liquid Crystal NMR Spectroscopy

Lishan Yao; Alexander Grishaev; Gabriel Cornilescu; Ad Bax

Site-specific 1H chemical shift anisotropy (CSA) tensors have been derived for the well-ordered backbone amide moieties in the B3 domain of protein G (GB3). Experimental input data include residual chemical shift anisotropy (RCSA), measured in six mutants that align differently relative to the static magnetic field when dissolved in a liquid crystalline Pf1 suspension, and cross-correlated relaxation rates between the 1HN CSA tensor and either the 1H−15N, the 1H−13C′, or the 1H−13Cα dipolar interactions. Analyses with the assumption that the 1HN CSA tensor is symmetric with respect to the peptide plane (three-parameter fit) or without this premise (five-parameter fit) yield very similar results, confirming the robustness of the experimental input data, and that, to a good approximation, one of the principal components orients orthogonal to the peptide plane. 1HN CSA tensors are found to deviate strongly from axial symmetry, with the most shielded tensor component roughly parallel to the N−H vector, and the least shielded component orthogonal to the peptide plane. DFT calculations on pairs of N-methyl acetamide and acetamide in H-bonded geometries taken from the GB3 X-ray structure correlate with experimental data and indicate that H-bonding effects dominate variations in the 1HN CSA. Using experimentally derived 1HN CSA tensors, the optimal relaxation interference effect needed for narrowest 1HN TROSY line widths is found at ∼1200 MHz.


Journal of Biological Chemistry | 2008

Characterization of Two Thermostable Cyanobacterial Phytochromes Reveals Global Movements in the Chromophore-binding Domain during Photoconversion

Andrew T. Ulijasz; Gabriel Cornilescu; David von Stetten; Steve Kaminski; Maria Andrea Mroginski; Junrui Zhang; Devaki Bhaya; Peter Hildebrandt; Richard D. Vierstra

Photointerconversion between the red light-absorbing (Pr) form and the far-red light-absorbing (Pfr) form is the central feature that allows members of the phytochrome (Phy) superfamily to act as reversible switches in light perception. Whereas the chromophore structure and surrounding binding pocket of Pr have been described, those for Pfr have remained enigmatic for various technical reasons. Here we describe a novel pair of Phys from two thermophilic cyanobacteria, Synechococcus sp. OS-A and OS-B′, that overcome several of these limitations. Like other cyanobacterial Phys, SyA-Cph1 and SyB-Cph1 covalently bind the bilin phycocyanobilin via their cGMP phosphodiesterase/adenyl cyclase/FhlA (GAF) domains and then assume the photointerconvertible Pr and Pfr states with absorption maxima at 630 and 704 nm, respectively. However, they are naturally missing the N-terminal Per/Arndt/Sim domain common to others in the Phy superfamily. Importantly, truncations containing only the GAF domain are monomeric, photochromic, and remarkably thermostable. Resonance Raman and NMR spectroscopy show that all four pyrrole ring nitrogens of phycocyanobilin are protonated both as Pr and following red light irradiation, indicating that the GAF domain by itself can complete the Pr to Pfr photocycle. 1H-15N two-dimensional NMR spectra of isotopically labeled preparations of the SyB-Cph1 GAF domain revealed that a number of amino acids change their environment during photoconversion of Pr to Pfr, which can be reversed by subsequent photoconversion back to Pr. Through three-dimensional NMR spectroscopy before and after light photoexcitation, it should now be possible to define the movements of the chromophore and binding pocket during photoconversion. We also generated a series of strongly red fluorescent derivatives of SyB-Cph1, which based on their small size and thermostability may be useful as cell biological reporters.


Biochemistry | 2008

Solution Structure of the Iron−Sulfur Cluster Cochaperone HscB and Its Binding Surface for the Iron−Sulfur Assembly Scaffold Protein IscU

Anna K. Füzéry; Marco Tonelli; Dennis T. Ta; Gabriel Cornilescu; Larry E. Vickery; John L. Markley

The interaction between IscU and HscB is critical for successful assembly of iron−sulfur clusters. NMR experiments were performed on HscB to investigate which of its residues might be part of the IscU binding surface. Residual dipolar couplings (1DHN and 1DCαHα) indicated that the crystal structure of HscB [Cupp-Vickery, J. R., and Vickery, L. E. (2000) Crystal structure of Hsc20, a J-type cochaperone from Escherichia coli, J. Mol. Biol. 304, 835−845] faithfully represents its solution state. NMR relaxation rates (15N R1, R2) and 1H−15N heteronuclear NOE values indicated that HscB is rigid along its entire backbone except for three short regions which exhibit flexibility on a fast time scale. Changes in the NMR spectrum of HscB upon addition of IscU mapped to the J-domain/C-domain interface, the interdomain linker, and the C-domain. Sequence conservation is low in the interface and in the linker, and NMR changes observed for these residues likely result from indirect effects of IscU binding. NMR changes observed in the conserved patch of residues in the C-domain (L92, M93, L96, E97, E100, E104, and F153) were suggestive of a direct interaction with IscU. To test this, we replaced several of these residues with alanine and assayed for the ability of HscB to interact with IscU and to stimulate HscA ATPase activity. HscB(L92A,M93A,F153A) and HscB(E97A,E100A,E104A) both showed decreased binding affinity for IscU; the (L92A,M93A,F153A) substitution also strongly perturbed the allosteric interaction within the HscA·IscU·HscB ternary complex. We propose that the conserved patch in the C-domain of HscB is the principal binding site for IscU.


Journal of Biological Chemistry | 2014

Dynamic Structural Changes Underpin Photoconversion of a Blue/Green Cyanobacteriochrome between Its Dark and Photoactivated States

Claudia C. Cornilescu; Gabriel Cornilescu; E. Sethe Burgie; John L. Markley; Andrew T. Ulijasz; Richard D. Vierstra

Background: Phytochromes are photochromic bili-proteins vital to microbial and plant photoperception. Results: NMR spectroscopy generated three-dimensional structures of the photosensing module from a cyanobacterial variant in the dark and photoactivated states. Conclusion: Photoconversion involves thioether bond rupture, bilin isomerization and sliding, and increased protein disorder. Significance: Combined with crystallographic models, these paired NMR structures provide an unprecedented view into photoconversion of a phytochrome-type photoreceptor. The phytochrome superfamily of photoreceptors exploits reversible light-driven changes in the bilin chromophore to initiate a variety of signaling cascades. The nature of these alterations and how they impact the protein moiety remain poorly resolved and might include several species-specific routes. Here, we provide a detailed picture of photoconversion for the photosensing cGMP phosphodiesterase/adenylyl cyclase/FhlA (GAF) domain from Thermosynechococcus elongatus (Te) PixJ, a member of the cyanobacteriochrome clade. Solution NMR structures of the blue light-absorbing dark state Pb and green light-absorbing photoactivated state Pg, combined with paired crystallographic models, revealed that the bilin and GAF domain dynamically transition via breakage of the C10/Cys-494 thioether bond, opposite rotations of the A and D pyrrole rings, sliding of the bilin in the GAF pocket, and the appearance of an extended region of disorder that includes Cys-494. Changes in GAF domain backbone dynamics were also observed that are likely important for inter-domain signal propagation. Taken together, photoconversion of T. elongatus PixJ from Pb to Pg involves complex structural changes within the GAF domain pocket that transduce light into a mechanical signal, many aspects of which should be relevant to others within the extended phytochrome superfamily.


Protein Science | 2006

Solution structure of a small protein containing a fluorinated side chain in the core.

Gabriel Cornilescu; Erik B. Hadley; Matthew G. Woll; John L. Markley; Samuel H. Gellman; Claudia C. Cornilescu

We report the first high‐resolution structure for a protein containing a fluorinated side chain. Recently we carried out a systematic evaluation of phenylalanine to pentafluorophenylalanine (Phe → F5‐Phe) mutants for the 35‐residue chicken villin headpiece subdomain (c‐VHP), the hydrophobic core of which features a cluster of three Phe side chains (residues 6, 10, and 17). Phe → F5‐Phe mutations are interesting because aryl–perfluoroaryl interactions of optimal geometry are intrinsically more favorable than either aryl–aryl or perfluoroaryl–perfluoroaryl interactions, and because perfluoroaryl units are more hydrophobic than are analogous aryl units. Only one mutation, Phe10 → F5‐Phe, was found to provide enhanced tertiary structural stability relative to the native core (by ∼1 kcal/mol, according to guanidinium chloride denaturation studies). The NMR structure of this mutant, described here, reveals very little variation in backbone conformation or side chain packing relative to the wild type. Thus, although Phe → F5‐Phe mutations offer the possibility of greater tertiary structural stability from side chain–side chain attraction and/or side chain desolvation, the constraints associated with the native c‐VHP fold apparently prevent the modified polypeptide from taking advantage of this possibility. Our findings are important because they complement several studies that have shown that fluorination of saturated side chain carbon atoms can provide enhanced conformational stability.

Collaboration


Dive into the Gabriel Cornilescu's collaboration.

Top Co-Authors

Avatar

John L. Markley

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Claudia C. Cornilescu

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Marco Tonelli

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Ad Bax

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Samuel E. Butcher

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Andrew T. Ulijasz

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Richard D. Vierstra

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

William M. Westler

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Woonghee Lee

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge