Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yftah Tal-Gan is active.

Publication


Featured researches published by Yftah Tal-Gan.


Journal of the American Chemical Society | 2013

Highly Potent Inhibitors of Quorum Sensing in Staphylococcus aureus Revealed Through a Systematic Synthetic Study of the Group-III Autoinducing Peptide

Yftah Tal-Gan; Danielle M. Stacy; Mary Kay Foegen; David William Koenig; Helen E. Blackwell

Methods to intercept bacterial quorum sensing (QS) have attracted significant attention as potential anti-infective therapies. Staphylococcus aureus is a major human pathogen that utilizes autoinducing peptide (AIP) signals to mediate QS and thereby regulate virulence. S. aureus strains are categorized into four groups (I-IV) according to their AIP signal and cognate extracellular receptor, AgrC. Each group is associated with a certain disease profile, and S. aureus group-III strains are responsible for toxic shock syndrome and have been underestimated in other infections to date. A limited set of non-native AIP analogs have been shown to inhibit AgrC receptors; such compounds represent promising tools to study QS pathways in S. aureus . We seek to expand this set of chemical probes and report herein the first design, synthesis, and biological testing of AIP-III mimetics. A set of non-native peptides was identified that can inhibit all four of the AgrC receptors (I-IV) with picomolar IC50 values in reporter strains. These analogs also blocked hemolysis by wild-type S. aureus group I-IV strains-a virulence trait under the control of QS-at picomolar concentrations. Moreover, four of the lead AgrC inhibitors were capable of attenuating the production of toxic shock syndrome toxin-1 (also under the control of QS) by over 80% at nanomolar concentrations in a wild-type S. aureus group-III strain. These peptides represent, to our knowledge, the most potent synthetic inhibitors of QS in S. aureus known, and constitute new and readily accessible chemical tools for the study of the AgrC system and virulence in this deadly pathogen.


Advanced Healthcare Materials | 2014

Surface coatings that promote rapid release of peptide-based AgrC inhibitors for attenuation of quorum sensing in Staphylococcus aureus.

Adam H. Broderick; Danielle M. Stacy; Yftah Tal-Gan; Michael J. Kratochvil; Helen E. Blackwell; David M. Lynn

Staphylococcus aureus is a major human pathogen responsible for a variety of life-threatening infections. The pathogenicity of this organism is attributed to its ability to produce a range of virulence factors and toxins, including the superantigen toxic shock syndrome toxin-1 (TSST-1). While many S. aureus infections can be treated using conventional antibiotics, strains resistant to these bactericidal agents have emerged. Approaches that suppress pathogenicity through mechanisms that are nonbactericidal (i.e., antivirulence approaches) could provide new options for treating infections, including those caused by resistant strains. Here, we report a nonbactericidal approach to suppressing pathogenicity based on the release of macrocyclic peptides (1 and 2) that inhibit the agr quorum sensing (QS) circuit in group-III S. aureus. It is demonstrated that these peptides can be immobilized on planar and complex objects (on glass slides, nonwoven meshes, or within absorbent tampons) using the rapidly dissolving polymer carboxymethylcellulose (CMC). Peptide-loaded CMC films released peptide rapidly (<5 min) and promoted strong (>95%) inhibition of the agr QS circuit without inducing cell death when incubated in the presence of a group-III S. aureus gfp-reporter strain. Peptide 1 is among the most potent inhibitors of QS in S. aureus reported to date, and the group-III QS circuit regulates production of TSST-1, the primary cause of toxic shock syndrome (TSS). These results thus suggest approaches to treat the outer covers of tampons, wound dressings, or other objects to suppress toxin production and reduce the severity of TSS in clinical and personal care contexts. Because peptide 1 also inhibits QS in S. aureus groups-I, -II, and -IV, this approach could also provide a pathway for attenuation of QS and associated virulence phenotypes in a broader range of contexts.


ACS Biomaterials Science & Engineering | 2015

Nanoporous Superhydrophobic Coatings that Promote the Extended Release of Water-Labile Quorum Sensing Inhibitors and Enable Long-Term Modulation of Quorum Sensing in Staphylococcus aureus.

Michael J. Kratochvil; Yftah Tal-Gan; Tian Yang; Helen E. Blackwell; David M. Lynn

Materials and coatings that inhibit bacterial colonization are of interest in a broad range of biomedical, environmental, and industrial applications. In view of the rapid increase in bacterial resistance to conventional antibiotics, the development of new strategies that target nonessential pathways in bacterial pathogens—and that thereby limit growth and reduce virulence through nonbiocidal means—has attracted considerable attention. Bacterial quorum sensing (QS) represents one such target, and is intimately connected to virulence in many human pathogens. Here, we demonstrate that the properties of nanoporous, polymer-based superhydrophobic coatings can be exploited to host and subsequently sustain the extended release of potent and water-labile peptide-based inhibitors of QS (QSIs) in Staphylococcus aureus. Our results demonstrate that these peptidic QSIs can be released into surrounding media for periods of at least 8 months, and that they strongly inhibit agr-based QS in S. aureus for at least 40 days. These results also suggest that these extremely nonwetting coatings can confer protection against the rapid hydrolysis of these water-labile peptides, thereby extending their useful lifetimes. Finally, we demonstrate that these peptide-loaded superhydrophobic coatings can strongly modulate the QS-controlled formation of biofilm in wild-type S. aureus. These nanoporous superhydrophobic films provide a new, useful, and nonbiocidal approach to the design of coatings that attenuate bacterial virulence. This approach has the potential to be general, and could prove suitable for the encapsulation, protection, and release of other classes of water-sensitive agents. We anticipate that the materials, strategies, and concepts reported here will enable new approaches to the long-term attenuation of QS and associated bacterial phenotypes in a range of basic research and applied contexts.


Angewandte Chemie | 2016

Highly Stable, Amide-Bridged Autoinducing Peptide Analogues that Strongly Inhibit the AgrC Quorum Sensing Receptor in Staphylococcus aureus.

Yftah Tal-Gan; Monika Ivancic; Gabriel Cornilescu; Tian Yang; Helen E. Blackwell

Blocking quorum sensing (QS) pathways has attracted considerable interest as an approach to suppress virulence in bacterial pathogens. Toward this goal, we recently developed analogues of a native autoinducing peptide (AIP-III) signal that can inhibit AgrC-type QS receptors and attenuate virulence phenotypes in Staphylococcus aureus. Application of these compounds is limited, however, as they contain hydrolytically unstable thioester linkages and have only low aqueous solubilities. Herein, we report amide-linked AIP analogues with greatly enhanced hydrolytic stabilities and solubilities relative to our prior analogues, whilst maintaining strong potencies as AgrC receptor inhibitors in S. aureus. These compounds represent powerful tools for the study of QS.


ACS Chemical Biology | 2016

Structure-Function Analyses of a Staphylococcus epidermidis Autoinducing Peptide Reveals Motifs Critical for AgrC-type Receptor Modulation.

Tian Yang; Yftah Tal-Gan; Alexandra E. Paharik; Alexander R. Horswill; Helen E. Blackwell

Staphylococcus epidermidis is frequently implicated in human infections associated with indwelling medical devices due to its ubiquity in the skin flora and formation of robust biofilms. The accessory gene regulator (agr) quorum sensing (QS) system plays a prominent role in the establishment of biofilms and infection by this bacterium. Agr activation is mediated by the binding of a peptide signal (or autoinducing peptide, AIP) to its cognate AgrC receptor. Many questions remain about the role of QS in S. epidermidis infections, as well as in mixed-microbial populations on a host, and chemical modulators of its agr system could provide novel insights into this signaling network. The AIP ligand provides an initial scaffold for the development of such probes; however, the structure-activity relationships (SARs) for activation of S. epidermidis AgrC receptors by AIPs are largely unknown. Herein, we report the first SAR analyses of an S. epidermidis AIP by performing systematic alanine and d-amino acid scans of the S. epidermidis AIP-I. On the basis of these results, we designed and identified potent, pan-group inhibitors of the AgrC receptors in the three S. epidermidis agr groups, as well as a set of AIP-I analogs capable of selective AgrC inhibition in either specific S. epidermidis agr groups or in another common staphylococcal species, S. aureus. In addition, we uncovered a non-native peptide agonist of AgrC-I that can strongly inhibit S. epidermidis biofilm growth. Together, these synthetic analogs represent new and readily accessible probes for investigating the roles of QS in S. epidermidis colonization and infections.


ChemBioChem | 2017

Simplified AIP‐II Peptidomimetics Are Potent Inhibitors of Staphylococcus aureus AgrC Quorum Sensing Receptors

Joseph K. Vasquez; Yftah Tal-Gan; Gabriel Cornilescu; Kimberly A. Tyler; Helen E. Blackwell

The bacterial pathogen Staphylococcus aureus controls many aspects of virulence by using the accessory gene regulator (agr) quorum sensing (QS) system. The agr system is activated by a macrocyclic peptide signal known as an autoinducing peptide (AIP). We sought to develop structurally simplified mimetics of AIPs for use as chemical tools to study QS in S. aureus. Herein, we report new peptidomimetic AgrC receptor inhibitors based on a tail‐truncated AIP‐II peptide that have almost analogous inhibitory activities to the parent peptide. Structural comparison of one of these peptidomimetics to the parent peptide and a highly potent, all‐peptide‐derived, S. aureus agr inhibitor (AIP‐III D4A) revealed a conserved hydrophobic motif and overall amphipathic nature. Our results suggest that the AIP scaffold is amenable to structural mimicry and minimization for the development of synthetic agr inhibitors.


ACS Chemical Biology | 2017

Structure–Activity Relationships of the Competence Stimulating Peptides (CSPs) in Streptococcus pneumoniae Reveal Motifs Critical for Intra-group and Cross-group ComD Receptor Activation

Yifang Yang; Bimal Koirala; Lucia A. Sanchez; Naiya R. Phillips; Sally R. Hamry; Yftah Tal-Gan

Streptococcus pneumoniae is a highly recombinogenic human pathogen that utilizes the competence stimulating peptide (CSP)-based quorum sensing (QS) circuitry to acquire antibiotic resistance genes from the environment and initiate its attack on the human host. Modulation of QS in this bacterium, either inhibition or activation, can therefore be used to attenuate S. pneumoniae infectivity and slow down pneumococcal resistance development. In this study, we set to determine the molecular mechanism that drives CSP:receptor binding and identify CSP-based QS modulators with distinct activity profiles. To this end, we conducted systematic replacement of the amino acid residues in the two major CSP signals (CSP1 and CSP2) and assessed the ability of the mutated analogs to modulate QS against both cognate and noncognate ComD receptors. We then evaluated the overall 3D structures of these analogs using circular dichroism (CD) to correlate between the structure and function of these peptides. Our CD analysis revealed a strong correlation between α-helicity and bioactivity for both specificity groups (CSP1 and CSP2). Furthermore, we identified the first pan-group QS activator and the most potent group-II QS inhibitor to date. These chemical probes can be used to study the role of QS in S. pneumoniae and as scaffolds for the design of QS-based anti-infective therapeutics against S. pneumoniae infections.


Beilstein Journal of Organic Chemistry | 2018

Defining the hydrophobic interactions that drive competence stimulating peptide (CSP)-ComD binding in Streptococcus pneumoniae

Bimal Koirala; Robert A. Hillman; Erin K. Tiwold; Michael A. Bertucci; Yftah Tal-Gan

Quorum sensing (QS) is a cell–cell communication mechanism that enables bacteria to assess their population density and alter their behavior upon reaching high cell number. Many bacterial pathogens utilize QS to initiate an attack on their host, thus QS has attracted significant attention as a potential antivirulence alternative to traditional antibiotics. Streptococcus pneumoniae, a notorious human pathogen responsible for a variety of acute and chronic infections, utilizes the competence regulon and its associated signaling peptide, the competence stimulating peptide (CSP), to acquire antibiotic resistance and establish an infection. In this work, we sought to define the binding pockets within the ComD1 receptor used for binding the hydrophobic side-chain residues in CSP1 through the introduction of highly-conservative point mutations within the peptide. Optimization of these binding interactions could lead to the development of highly potent CSP-based QS modulators while the inclusion of non-natural amino acids within the CSP sequence would confer resistance to protease degradation, a requirement for drug candidates.


Journal of the American Chemical Society | 2013

Structural Characterization of Native Autoinducing Peptides and Abiotic Analogues Reveals Key Features Essential for Activation and Inhibition of an AgrC Quorum Sensing Receptor in Staphylococcus aureus

Yftah Tal-Gan; Monika Ivancic; Gabriel Cornilescu; Claudia C. Cornilescu; Helen E. Blackwell


Organic and Biomolecular Chemistry | 2016

Characterization of structural elements in native autoinducing peptides and non-native analogues that permit the differential modulation of AgrC-type quorum sensing receptors in Staphylococcus aureus

Yftah Tal-Gan; Monika Ivancic; Gabriel Cornilescu; Helen E. Blackwell

Collaboration


Dive into the Yftah Tal-Gan's collaboration.

Top Co-Authors

Avatar

Helen E. Blackwell

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Gabriel Cornilescu

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Danielle M. Stacy

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Monika Ivancic

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Tian Yang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Lynn

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Michael J. Kratochvil

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Adam H. Broderick

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Alexander R. Horswill

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge