Gabriel E. Bertolesi
University of Calgary
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gabriel E. Bertolesi.
The Journal of Neuroscience | 2010
Karen Atkinson-Leadbeater; Gabriel E. Bertolesi; Carrie L. Hehr; C.A. Webber; Paula B. Cechmanek; Sarah McFarlane
Axons are guided to their targets by molecular cues expressed in their environment. How is the presence of these cues regulated? Although some evidence indicates that morphogens establish guidance cue expression as part of their role in patterning tissues, an important question is whether morphogens are then required to maintain guidance signals. We found that fibroblast growth factor (FGF) signaling sustains the expression of two guidance cues, semaphorin3A (xsema3A) and slit1 (xslit1), throughout the period of Xenopus optic tract development. With FGF receptor inhibition, xsema3A and xslit1 levels were rapidly diminished, and retinal ganglion cell axons arrested in the mid-diencephalon, before reaching their target. Importantly, direct downregulation of XSema3A and XSlit1 mostly phenocopied this axon guidance defect. Thus, FGFs promote continued presence of specific guidance cues critical for normal optic tract development, suggesting a second later role for morphogens, independent of tissue patterning, in maintaining select cues by acting to regulate their transcription.
Mechanisms of Development | 2010
Jennifer C. Hocking; Carrie L. Hehr; Gabriel E. Bertolesi; Jane Y. Wu; Sarah McFarlane
Guidance factors act on the tip of a growing axon to direct it to its target. What role these molecules play, however, in the control of the dendrites that extend from that axons cell body is poorly understood. Slits, through their Robo receptors, guide many types of axons, including those of retinal ganglion cells (RGCs). Here we assess and contrast the role of Slit/Robo signalling in the growth and guidance of the axon and dendrites extended by RGCs in Xenopus laevis. As Xenopus RGCs extend dendrites, they express robo2 and robo3, while slit1 and slit2 are expressed in RGCs and in the adjacent inner nuclear layer. Interestingly, our functional data with antisense knockdown and dominant negative forms of Robo2 (dnRobo2) and Robo3 (dnRobo3) indicate that Slit/Robo signalling has no role in RGC dendrite guidance, and instead is necessary to stimulate dendrite branching, primarily via Robo2. Our in vitro culture data argue that Slits are the ligands involved. In contrast, both dnRobo2 and dnRobo3 inhibited the extension of axons and caused the misrouting of some axons. Based on these data, we propose that Robo signalling can have distinct functions in the axon and dendrites of the same cell, and that the specific combinations of Robo receptors could underlie these differences. Slit acts via Robo2 in dendrites as a branching/growth factor but not in guidance, while Robo2 and Robo3 function in concert in axons to mediate axonal interactions and respond to Slits as guidance factors. These data underscore the likelihood that a limited number of extrinsic factors regulate the distinct morphologies of axons and dendrites.
Developmental Biology | 2009
Jennifer C. Hocking; Carrie L. Hehr; Gabriel E. Bertolesi; Hiroshi Funakoshi; Toshikazu Nakamura; Sarah McFarlane
The actin cytoskeleton inside extending axonal and dendritic processes must undergo continuous assembly and disassembly. Some extrinsic factors modulate actin turnover through controlling the activity of LIM kinase 1 (LIMK1), which phosphorylates and inactivates the actin depolymerizing factor cofilin. Here, we for the first time examine the function and regulation of LIMK1 in vivo in the vertebrate nervous system. Upon expression of wildtype or kinase-dead forms of the protein, dendrite growth by Xenopus retinal ganglion cells (RGCs) was unchanged. In contrast, maintaining a low, but significant level, of LIMK1 function in the RGC axon is critical for proper extension. Interestingly, bone morphogenetic protein receptor II (BMPRII) is a major regulator of LIMK1 in extending RGC axons, as expression of a BMPRII lacking the LIMK1 binding region caused a dramatic shortening of the axons. Previously, we found that BMPRIIs stimulate dendrite initiation in vivo. Thus, the fact that manipulation of LIMK1 activity failed to alter dendrite growth suggests that BMPs may activate distinct signalling pathways in axons and dendrites.
Development | 2013
Elizabeth M. Kita; Gabriel E. Bertolesi; Carrie L. Hehr; Jillian Johnston; Sarah McFarlane
The majority of neurons in the nervous system exhibit a polarized morphology, with multiple short dendrites and a single long axon. It is clear that multiple factors govern polarization in developing neurons, and the biased accumulation of intrinsic determinants to one side of the cell, coupled with responses to asymmetrically localized extrinsic factors, appears to be crucial. A number of intrinsic factors have been identified, but surprisingly little is known about the identity of the extrinsic signals. Here, we show in vivo that neuropilin-1 (Nrp1) and its co-receptor plexinA1 (Plxna1) are necessary to bias the extension of the dendrites of retinal ganglion cells to the apical side of the cell, and ectopically expressed class III semaphorins (Sema3s) disrupt this process. Importantly, the requirement for Nrp1 and Plxna1 in dendrite polarization occurs at a developmental time point after the cells have already extended their basally directed axon. Thus, we propose a novel mechanism whereby an extrinsic factor, probably a Sema3, acts through Nrp1 and Plxna1 to promote the asymmetric outgrowth of dendrites independently of axon polarization.
Neural Development | 2014
Gabriel E. Bertolesi; Carrie L. Hehr; Sarah McFarlane
BackgroundLight information is sorted by neuronal circuits to generate image-forming (IF) (interpretation and tracking of visual objects and patterns) and non-image-forming (NIF) tasks. Among the NIF tasks, photic entrainment of circadian rhythms, the pupillary light reflex, and sleep are all associated with physiological responses, mediated mainly by a small group of melanopsin-expressing retinal ganglion cells (mRGCs). Using Xenopus laevis as a model system, and analyzing the c-fos expression induced by light as a surrogate marker of neural activity, we aimed to establish the developmental time at which the cells participating in both systems come on-line in the retina.ResultsWe found that the peripheral retina contains 80% of the two melanopsin-expressing cell types we identified in Xenopus: melanopsin-expressing horizontal cells (mHCs; opn4m+/opn4x+/Prox1+) and mRGCs (2.7% of the total RGCs; opn4m+/opn4x+/Pax6+/Isl1), in a ratio of 6:1. Only mRGCs induced c-fos expression in response to light. Dopaminergic (tyrosine hydroxylase-positive; TH+) amacrine cells (ACs) may be part of the melanopsin-mediated circuit, as shown by preferential c-fos induction by blue light. In the central retina, two cell types in the inner nuclear layer (INL) showed light-mediated induction of c-fos expression [(On-bipolar cells (Otx2+/Isl1+), and a sub-population of ACs (Pax6−/Isl1−)], as well as two RGC sub-populations (Isl1+/Pax6+ and Isl1+/Pax6−). Melanopsin and opsin expression turned on a day before the point at which c-fos expression could first be activated by light (Stage 37/38), in cells of both the classic vision circuit, and those that participate in the retinal component of the NIF circuit. Key to the classic vision circuit is that the component cells engage from the beginning as functional ‘unit circuits’ of two to three cells in the INL for every RGC, with subsequent growth of the vision circuit occurring by the wiring in of more units.ConclusionsWe identified melanopsin-expressing cells and specific cell types in the INL and the RGC layer which induce c-fos expression in response to light, and we determined the developmental time when they become active. We suggest an initial formulation of retinal circuits corresponding to the classic vision pathway and melanopsin-mediated circuits to which they may contribute.
Developmental Dynamics | 2009
Karen Atkinson-Leadbeater; Gabriel E. Bertolesi; Jillian Johnston; Carrie L. Hehr; Sarah McFarlane
LIM‐homeodomain (LIM‐hd) proteins form a multifunctional family of transcription factors that plays critical roles in the development of progenitor and post‐mitotic cells. Considerable work has focused on what regulates their expression post‐mitotically in the spinal cord. However, little is known about what regulates LIM‐hd genes at earlier developmental stages. To address this question, we explored the role of fibroblast growth factor (FGF) signalling in regulating the expression of a Xenopus laevis Lhx9 orthologue (XLhx9). XLhx9 is first expressed in the eye field and hindbrain, and when FGF receptor (FGFR) activation was inhibited prior to its onset, both brain and eye field expression was diminished. However, when FGFRs were inhibited after XLhx9 onset, retinal expression remained strong and brain expression was again diminished. These data suggest that while FGF signalling initiates and maintains brain XLhx9 expression, in the eye primordium the requirement of FGFs for expression is rapidly lost. Developmental Dynamics 238:367–375, 2009.
Journal of Biological Chemistry | 2008
Gabriel E. Bertolesi; George Michaiel; Sarah McFarlane
Heparanase is an endoglycosidase that cleaves heparan sulfate (HS) side chains from heparan sulfate proteoglycans (HSPGs) present in extracellular matrix and cell membranes. Although HSPGs have many functions during development, little is known of the role of the enzyme that degrades HS, heparanase. We cloned and characterized the expression of two heparanase splicing variants from Xenopus laevis and studied their function in early embryonic development. The heparanase gene (termed xHpa) spans over 15 kb and consists of at least 12 exons. The long heparanase (XHpaL) cDNA encodes a 531-amino acid protein, whereas the short splicing variant (XHpaS) results in a protein with the same open reading frame but missing 58 amino acids as a consequence of a skipped exon 4. Comparative studies of both isoforms using heterologous expression systems showed: 1) XHpaL is enzymatically active, whereas XHpaS is not; 2) XHpaL and XHpaS interact with heparin and HS; 3) both proteins traffic through the endoplasmic reticulum and Golgi apparatus, but XHpaL is secreted into the medium, whereas XHpaS remains associated with the membrane as a consequence of the loss of three glycosylation sites; 4) overexpression of XHpaS but not XHpaL increases cell adhesion of glioma cells to HS-coated surfaces; 5) XHpaL and XHpaS mRNA and protein levels vary as development progresses; 6) specific antisense knock-down of both XHpaL and XHpaS, but not XHpaL alone, results in failure of embryogenesis to proceed. Interestingly, rescue experiments suggest that the two heparanases regulate the same developmental processes, but via different mechanisms.
Developmental Dynamics | 2016
Karen Atkinson-Leadbeater; Carrie L. Hehr; Jill Johnston; Gabriel E. Bertolesi; Sarah McFarlane
Background: Antioxidants such as the green tea polyphenol epigallocatechin gallate (EGCG) are neuroprotective under many conditions in mature nervous systems; however, their impact has rarely been explored in developing nervous systems, in which a critical step is the formation of connections between neurons. Axons emerge from newly formed neurons and are led by a dynamic structure found at their tip called a growth cone. Here we explore the impact of EGCG on the development of retinal ganglion cell (RGC) axons, which connect the eye to the brain. Results: EGCG acts directly on RGC axons to increase the number of growth cone filopodia, fingerlike projections that respond to extrinsic signals, in vitro and in vivo. Furthermore, EGCG exposure leads to a dramatic defect in the guided growth of RGC axons where the axons fail to make a key turn in the mid‐diencephalon required to reach their target. Intriguingly, at guidance points where RGCs do not show a change in direction, EGCG has no influence on RGC axon behavior. Conclusions: We propose that EGCG stabilizes filopodia and prevents normal filopodial dynamics required for axons to change their direction of outgrowth at guidance decision points. Developmental Dynamics 245:667–677, 2016.
Pigment Cell & Melanoma Research | 2015
Gabriel E. Bertolesi; Carrie L. Hehr; Sarah McFarlane
How skin colour adjusts to circadian light/dark cycles is poorly understood. Melanopsin (Opn4) is expressed in melanophores, where in vitro studies suggest it regulates skin pigmentation through a ‘primary colour response’ in which light photosensitivity is translated directly into pigment movement. However, the entrainment of the circadian rhythm is regulated by a population of melanopsin‐expressing retinal ganglion cells (mRGCs) in the eye. Therefore, in vivo, melanopsin may trigger a ‘secondary colour response’ initiated in the eye and controlled by the neuro‐endocrine system. We analysed the expression of opn4m and opn4x and melanin aggregation induced by light (background adaptation) in Xenopus laevis embryos. While opn4m and opn4x are expressed at early developmental times, light‐induced pigment aggregation requires the eye to become functional. Pharmacological inhibition of melanopsin suggests a model whereby mRGC activation lightens skin pigmentation via a secondary response involving negative regulation of alpha‐melanocyte‐stimulating hormone (α‐MSH) secretion by the pituitary.
Developmental Dynamics | 2011
Gabriel E. Bertolesi; Hsiao Yuan Su; George Michaiel; Stephanie M. Dueck; Carrie L. Hehr; Sarah McFarlane
In Xenopus laevis embryos, heparanase, the enzyme that degrades heparan sulfate, is synthesized as a preproheparanase (XHpaL) and processed to become enzymatically active (XHpa active). A short nonenzymatic heparanase splice variant (XHpaS) is also expressed. Using immunohistochemistry, Western blot, and heparanase promoter analysis, we studied the dynamic developmental expression of the three heparanases. Our results indicate that (1) all three isoforms are maternally expressed; (2) XHpaS is a developmental variant; (3) in the early embryo, heparanase is localized to both the plasma membrane and the nucleus; (4) several tissues express heparanase, but expression in the developing nervous system is most evident; (5) two promoters with distinct activities in different tissues drive heparanase expression; (6) Oct binding transcription factors may modulate heparanase promoter activity in the early embryo. These data argue that heparanase is expressed widely during development, but localization and levels are finely regulated. Developmental Dynamics 240:2657–2672, 2011.