Sarah McFarlane
University of Calgary
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sarah McFarlane.
Journal of Cell Biology | 2004
Mayya Meriane; Joseph Tcherkezian; C.A. Webber; Eric I. Danek; Ibtissem Triki; Sarah McFarlane; Evelyne Bloch-Gallego; Nathalie Lamarche-Vane
Netrin-1 acts as a chemoattractant molecule to guide commissural neurons (CN) toward the floor plate by interacting with the receptor deleted in colorectal cancer (DCC). The molecular mechanisms underlying Netrin-1–DCC signaling are still poorly characterized. Here, we show that DCC is phosphorylated in vivo on tyrosine residues in response to Netrin-1 stimulation of CN and that the Src family kinase inhibitors PP2 and SU6656 block both Netrin-1–dependent phosphorylation of DCC and axon outgrowth. PP2 also blocks the reorientation of Xenopus laevis retinal ganglion cells that occurs in response to Netrin-1, which suggests an essential role of the Src kinases in Netrin-1–dependent orientation. Fyn, but not Src, is able to phosphorylate the intracellular domain of DCC in vitro, and we demonstrate that Y1418 is crucial for DCC axon outgrowth function. Both DCC phosphorylation and Netrin-1–induced axon outgrowth are impaired in Fyn−/− CN and spinal cord explants. We propose that DCC is regulated by tyrosine phosphorylation and that Fyn is essential for the response of axons to Netrin-1.
Neuron | 2003
Sarah McFarlane
Two families of metalloproteases, the matrix metalloproteases (MMPs) and the A Disintegrin and Metalloproteases (ADAMs), have recently been implicated in the formation of neural connections in the developing central nervous system. Invertebrate and vertebrate axons fail to extend and/or make pathfinding errors when metalloprotease function is inhibited or absent. Culture studies suggest that this requirement for metalloprotease activity results from their ability to cleave ligands, or their receptors, so as to activate or inhibit specific axon extension or guidance signaling pathways.
Development | 2005
Carrie L. Hehr; Jennifer C. Hocking; Sarah McFarlane
Axons receive guidance information from extrinsic cues in their environment in order to reach their targets. In the frog Xenopus laevis, retinal ganglion cell (RGC) axons make three key guidance decisions en route through the brain. First, they cross to the contralateral side of the brain at the optic chiasm. Second, they turn caudally in the mid-diencephalon. Finally, they must recognize the optic tectum as their target. The matrix metalloproteinase (MMP) and a disintegrin and metalloproteinase (ADAM) families are zinc (Zn)-dependent proteolytic enzymes. The latter functions in axon guidance, but a similar role has not yet been identified for the MMP family. Our previous work implicated metalloproteinases in the guidance decisions made by Xenopus RGC axons. To test specifically the importance of MMPs, we used two different in vivo exposed brain preparations in which RGC axons were exposed to an MMP-specific pharmacological inhibitor (SB-3CT), either as they reached the optic chiasm or as they extended through the diencephalon en route to the optic tectum. Interestingly, SB-3CT affected only two of the guidance decisions, with misrouting defects at the optic chiasm and tectum. Only at higher concentrations was RGC axon extension also impaired. These data implicate MMPs in the guidance of vertebrate axons, and suggest that different metalloproteinases function to regulate axon behaviour at distinct choice points: an MMP is important in guidance at the optic chiasm and the target, while either a different MMP or an ADAM is required for axons to make the turn in the mid-diencephalon.
The Journal of Neuroscience | 2007
Yuanyuan Y. Chen; Carrie L. Hehr; Karen Atkinson-Leadbeater; Jennifer C. Hocking; Sarah McFarlane
The role of extrinsic cues in guiding developing axons is well established; however, the means by which the activity of these extrinsic cues is regulated is poorly understood. A disintegrin and metalloproteinase (ADAM) enzymes are Zn-dependent proteinases that can cleave guidance cues or their receptors in vitro. Here, we identify the first example of a metalloproteinase that functions in vertebrate axon guidance in vivo. Specifically, ADAM10 is required for formation of the optic projection by Xenopus retinal ganglion cell (RGC) axons. Xadam10 mRNA is expressed in the dorsal neuroepithelium through which RGC axons extend. Pharmacological or molecular inhibition of ADAM10 within the brain each resulted in a failure of RGC axons to recognize their target. In contrast, molecular inhibition of ADAM10 within the RGC axons themselves had no effect. These data argue strongly that in the dorsal brain ADAM10 acts cell non-autonomously to regulate the guidance of RGC axons.
Molecular and Cellular Neuroscience | 2005
C.A. Webber; Y.Y. Chen; Carrie L. Hehr; Jillian Johnston; Sarah McFarlane
Growth cones use cues in their environment in order to grow in a directed fashion to their targets. In Xenopus laevis, fibroblast growth factors (FGFs) participate in retinal ganglion cell (RGC) axon guidance in vivo and in vitro. The main intracellular signaling cascades known to act downstream of the FGF receptor include the mitogen-activated protein kinase (MAPK), phospholipase Cgamma (PLCgamma) and phosphotidylinositol 3-kinase (PI3K) pathways. We used pharmacological inhibitors to identify the signaling cascade(s) responsible for FGF-2-stimulated RGC axon extension and chemorepulsion. The MAPK, PI3K and PLCgamma pathways were blocked by U0126, LY249002 and U73122, respectively. D609 was used to test a role for the phosphotidylcholine-PLC (PC-PLC) pathway. We determined that the MAPK and two PLC pathways are required for FGF-2 to stimulate RGC neurite extension in vitro, but the response of axons to FGF-2 applied asymmetrically to the growth cone depended only on the PLC pathways.
Neural Development | 2007
Lin Ma; Robert Cantrup; Annie Varrault; Dilek Colak; Natalia Klenin; Magdalena Götz; Sarah McFarlane; Laurent Journot; Carol Schuurmans
BackgroundOrgans are programmed to acquire a particular size during development, but the regulatory mechanisms that dictate when dividing progenitor cells should permanently exit the cell cycle and stop producing additional daughter cells are poorly understood. In differentiated tissues, tumor suppressor genes maintain a constant cell number and intact tissue architecture by controlling proliferation, apoptosis and cell dispersal. Here we report a similar role for two tumor suppressor genes, the Zac1 zinc finger transcription factor and that encoding the cytokine TGFβII, in the developing retina.ResultsUsing loss and gain-of-function approaches, we show that Zac1 is an essential negative regulator of retinal size. Zac1 mutants develop hypercellular retinae due to increased progenitor cell proliferation and reduced apoptosis at late developmental stages. Consequently, supernumerary rod photoreceptors and amacrine cells are generated, the latter of which form an ectopic cellular layer, while other retinal cells are present in their normal number and location. Strikingly, Zac1 functions as a direct negative regulator of a rod fate, while acting cell non-autonomously to modulate amacrine cell number. We implicate TGFβII, another tumor suppressor and cytokine, as a Zac1-dependent amacrine cell negative feedback signal. TGFβII and phospho-Smad2/3, its downstream effector, are expressed at reduced levels in Zac1 mutant retinae, and exogenous TGFβII relieves the mutant amacrine cell phenotype. Moreover, treatment of wild-type retinae with a soluble TGFβ inhibitor and TGFβ receptor II (TGFβRII) conditional mutants generate excess amacrine cells, phenocopying the Zac1 mutant phenotype.ConclusionWe show here that Zac1 has an essential role in cell number control during retinal development, akin to its role in tumor surveillance in mature tissues. Furthermore, we demonstrate that Zac1 employs a novel cell non-autonomous strategy to regulate amacrine cell number, acting in cooperation with a second tumor suppressor gene, TGFβII, through a negative feedback pathway. This raises the intriguing possibility that tumorigenicity may also be associated with the loss of feedback inhibition in mature tissues.
Developmental Biology | 2003
C.A Webber; M.T Hyakutake; Sarah McFarlane
Growth factors have been shown previously to participate in the process of axon target recognition. We showed that fibroblast growth factor receptor (FGFR) signaling is required for Xenopus laevis retinal ganglion cell (RGC) axons to recognize their major midbrain target, the optic tectum [neuron 17 (1996), 245]. Therefore, we have hypothesized that a change in expression of a fibroblast growth factor (FGF) at the entrance of the optic tectum, the border between the diencephalon and mesencephalon, may serve as a signal to RGC axons that they have reached their target. To determine whether RGC axons can sense changes in FGF levels, we asked whether they altered their behavior upon encountering an ectopic source of FGF. We found that in vivo RGC growth cones avoided FGF-misexpressing cells along their path, and that FGF-2 directly repelled RGC growth cones in an in vitro growth cone turning assay. These data support the idea that RGC axons can sense changes in FGF levels, and as such provide a mechanism by which FGFR signaling is involved in RGC axon target recognition.
The Journal of Neuroscience | 2010
Karen Atkinson-Leadbeater; Gabriel E. Bertolesi; Carrie L. Hehr; C.A. Webber; Paula B. Cechmanek; Sarah McFarlane
Axons are guided to their targets by molecular cues expressed in their environment. How is the presence of these cues regulated? Although some evidence indicates that morphogens establish guidance cue expression as part of their role in patterning tissues, an important question is whether morphogens are then required to maintain guidance signals. We found that fibroblast growth factor (FGF) signaling sustains the expression of two guidance cues, semaphorin3A (xsema3A) and slit1 (xslit1), throughout the period of Xenopus optic tract development. With FGF receptor inhibition, xsema3A and xslit1 levels were rapidly diminished, and retinal ganglion cell axons arrested in the mid-diencephalon, before reaching their target. Importantly, direct downregulation of XSema3A and XSlit1 mostly phenocopied this axon guidance defect. Thus, FGFs promote continued presence of specific guidance cues critical for normal optic tract development, suggesting a second later role for morphogens, independent of tissue patterning, in maintaining select cues by acting to regulate their transcription.
Mechanisms of Development | 2010
Jennifer C. Hocking; Carrie L. Hehr; Gabriel E. Bertolesi; Jane Y. Wu; Sarah McFarlane
Guidance factors act on the tip of a growing axon to direct it to its target. What role these molecules play, however, in the control of the dendrites that extend from that axons cell body is poorly understood. Slits, through their Robo receptors, guide many types of axons, including those of retinal ganglion cells (RGCs). Here we assess and contrast the role of Slit/Robo signalling in the growth and guidance of the axon and dendrites extended by RGCs in Xenopus laevis. As Xenopus RGCs extend dendrites, they express robo2 and robo3, while slit1 and slit2 are expressed in RGCs and in the adjacent inner nuclear layer. Interestingly, our functional data with antisense knockdown and dominant negative forms of Robo2 (dnRobo2) and Robo3 (dnRobo3) indicate that Slit/Robo signalling has no role in RGC dendrite guidance, and instead is necessary to stimulate dendrite branching, primarily via Robo2. Our in vitro culture data argue that Slits are the ligands involved. In contrast, both dnRobo2 and dnRobo3 inhibited the extension of axons and caused the misrouting of some axons. Based on these data, we propose that Robo signalling can have distinct functions in the axon and dendrites of the same cell, and that the specific combinations of Robo receptors could underlie these differences. Slit acts via Robo2 in dendrites as a branching/growth factor but not in guidance, while Robo2 and Robo3 function in concert in axons to mediate axonal interactions and respond to Slits as guidance factors. These data underscore the likelihood that a limited number of extrinsic factors regulate the distinct morphologies of axons and dendrites.
Molecular and Cellular Neuroscience | 2008
Jennifer C. Hocking; Carrie L. Hehr; Ruoh-Yeng Chang; Jillian Johnston; Sarah McFarlane
Each type of neuron develops a unique morphology critical to its function, but almost all start with the basic plan of one long axon and multiple short, branched dendrites. Though extrinsic signals are known to direct many steps in the development of neuronal structure, little is understood about the initiation of processes, particularly dendrites. We find that Xenopus retinal ganglion cells (RGCs) explanted early will extend axons and not dendrites in dissociated cultures. If RGCs develop longer in vivo prior to culturing, many now extend dendrite-like processes in vitro, suggesting that an extrinsic factor is required to stimulate dendrite initiation. Members of the transforming growth factor beta (TGFbeta) superfamily, bone morphogenetic protein 2 (BMP2), and growth and differentiation factor 11 (GDF11), can signal cultured RGCs to form dendrites. Furthermore, TGFbeta ligands have an endogenous role: blocking BMP/GDF signaling with a secreted antagonist or inhibitory receptors reduces the number of primary dendrites extended in vivo.