Gabriel Falzone
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gabriel Falzone.
ACS Applied Materials & Interfaces | 2016
N. M. Anoop Krishnan; Bu Wang; Gabriel Falzone; Yann Le Pape; Narayanan Neithalath; Laurent Pilon; Mathieu Bauchy; Gaurav Sant
Water, under conditions of nanoscale confinement, exhibits anomalous dynamics, and enhanced thermal deformations, which may be further enhanced when such water is in contact with hydrophilic surfaces. Such heightened thermal deformations of water could control the volume stability of hydrated materials containing nanoconfined structural water. Understanding and predicting the thermal deformation coefficient (TDC, often referred to as the CTE, coefficient of thermal expansion), which represents volume changes induced in materials under conditions of changing temperature, is of critical importance for hydrated solids including: hydrogels, biological tissues, and calcium silicate hydrates, as changes in their volume can result in stress development, and cracking. By pioneering atomistic simulations, we examine the physical origin of thermal expansion in calcium-silicate-hydrates (C-S-H), the binding agent in concrete that is formed by the reaction of cement with water. We report that the TDC of C-S-H shows a sudden increase when the CaO/SiO2 (molar ratio; abbreviated as Ca/Si) exceeds 1.5. This anomalous behavior arises from a notable increase in the confinement of water contained in the C-S-Hs nanostructure. We identify that confinement is dictated by the topology of the C-S-Hs atomic network. Taken together, the results suggest that thermal deformations of hydrated silicates can be altered by inducing compositional changes, which in turn alter the atomic topology and the resultant volume stability of the solids.
Journal of Materials Science | 2016
Guillermo Puerta-Falla; Magdalena Balonis; Gwenn Le Saout; Aditya Kumar; Melanie Rivera; Gabriel Falzone; Narayanan Neithalath; Gaurav Sant
The addition of slightly (CaCO3) and highly soluble (Na2CO3) carbonate salts is expected to favor the formation of carboaluminate phases in hydrated calcium aluminate cements (CACs). A multi-method approach including X-ray diffraction, thermogravimetric analysis, and thermodynamic calculations is applied to highlight that the “conversion phenomena” in CACs cannot be mitigated by the formation of carboaluminate phases (monocarboaluminate: Mc and hemicarboaluminate: Hc) which are anticipated to form following the addition of carbonate salts. Here, carboaluminate phase formation is shown to depend on three factors: (1) water availability, (2) carbonate content of the salts, and their ability to mobilize CO32− species in solution, and (3) lime content associated with the carbonate salt. The latter two factors are linked to the composition and solubility of the carbonate agent. It is concluded that limestone (CaCO3), despite being a source of calcium and carbonate species, contributes only slightly to carboaluminate phase formation due to its low solubility and slow dissolution rate. Soluble carbonate salts (Na2CO3) fail to boost carboaluminate phase formation as the availability of Ca2+ ions and water are limiting. Detailed thermodynamic calculations are used to elucidate conditions that affect the formation of carboaluminate phases.
Cement and Concrete Research | 2017
Gabriel Falzone; Magdalena Balonis; Dale P. Bentz; Scott Z. Jones; Gaurav Sant
Chloride-induced corrosion is a major cause of degradation of reinforced concrete infrastructure. While the binding of chloride ions (Cl-) by cementitious phases is known to delay corrosion, this approach has not been systematically exploited as a mechanism to increase structural service life. Recently, Falzone et al. [Cement and Concrete Research72, 54-68 (2015)] proposed calcium aluminate cement (CAC) formulations containing NO3-AFm to serve as anion exchange coatings that are capable of binding large quantities of Cl- ions, while simultaneously releasing corrosion-inhibiting NO3- species. To examine the viability of this concept, Cl- binding isotherms and ion-diffusion coefficients of a series of hydrated CAC formulations containing admixed Ca(NO3)2 (CN) are quantified. This data is input into a multi-species Nernst-Planck (NP) formulation, which is solved for a typical bridge-deck geometry using the finite element method (FEM). For exposure conditions corresponding to seawater, the results indicate that Cl- scavenging CAC coatings (i.e., top-layers) can significantly delay the time to corrosion (e.g., 5 ≤ df ≤ 10, where df is the steel corrosion initiation delay factor [unitless]) as compared to traditional OPC-based systems for the same cover thickness; as identified by thresholds of Cl-/OH- or Cl-/NO3- (molar) ratios in solution. The roles of hindered ionic diffusion, and the passivation of the reinforcing steel rendered by NO3- are also discussed.
Journal of Colloid and Interface Science | 2018
Jason Timmons; Gabriel Falzone; Magdalena Balonis; Mathieu Bauchy; Gaurav Sant
HYPOTHESIS In suspensions, the activation energy of viscous flow is an important property that controls the temperature dependence of the viscosity. However, the differentiated roles of the properties of the liquid phase and the structure of the solid particles in controlling the activation energy remain unclear. We propose here that particle fractal structuring yields an anomalous behavior in the activation energy of viscous flow. EXPERIMENTS The rheology of two series of suspensions consisting of glass beads suspended in poly(1-decene) was investigated over a wide range of solid volume fractions (0.00 ≤ φ ≤ 0.55). These suspensions were characterized by their viscosity (η, Pa∙s) via shear rate sweeps and by their yield stress (Pa) via oscillatory amplitude sweeps. FINDINGS Interestingly, for suspensions consisting of nominally smaller particles (d50 ≈ 5 µm), we observe an anomalous decrease in the activation energy (Ea, kJ/mol) of viscous flow with increasing solid fraction. Based on oscillatory rheology analyses, it is suggested that such anomalous behavior arises due to entropic effects that result from the formation of fractally-architected cooperatively rearranging regions (i.e., agglomerates) in the suspension.
Cement & Concrete Composites | 2014
Fabio Fernandes; Shilpa Manari; Mathew Aguayo; Kevin Santos; Tandre Oey; Zhenhua Wei; Gabriel Falzone; Narayanan Neithalath; Gaurav Sant
Industrial & Engineering Chemistry Research | 2015
Kirk Vance; Gabriel Falzone; Isabella Pignatelli; Mathieu Bauchy; Magdalena Balonis; Gaurav Sant
Cement and Concrete Research | 2015
Gabriel Falzone; Magdalena Balonis; Gaurav Sant
Journal of the American Ceramic Society | 2015
Guillermo Puerta-Falla; Magdalena Balonis; Gwenn Le Saout; Gabriel Falzone; Carolyn Zhang; Narayanan Neithalath; Gaurav Sant
Cement & Concrete Composites | 2017
Zhenhua Wei; Gabriel Falzone; Bu Wang; Alexander M. Thiele; Guillermo Puerta-Falla; Laurent Pilon; Narayanan Neithalath; Gaurav Sant
Cement & Concrete Composites | 2016
Alexander M. Thiele; Zhenhua Wei; Gabriel Falzone; Benjamin A. Young; Narayanan Neithalath; Gaurav Sant; Laurent Pilon