Gabriel Iturriaga
Universidad Autónoma del Estado de Morelos
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gabriel Iturriaga.
BMC Evolutionary Biology | 2006
Nelson Avonce; Alfredo Mendoza-Vargas; Gabriel Iturriaga
BackgroundThe compatible solute trehalose is a non-reducing disaccharide, which accumulates upon heat, cold or osmotic stress. It was commonly accepted that trehalose is only present in extremophiles or cryptobiotic organisms. However, in recent years it has been shown that although higher plants do not accumulate trehalose at significant levels they have actively transcribed genes encoding the corresponding biosynthetic enzymes.ResultsIn this study we show that trehalose biosynthesis ability is present in eubacteria, archaea, plants, fungi and animals. In bacteria there are five different biosynthetic routes, whereas in fungi, plants and animals there is only one. We present phylogenetic analyses of the trehalose-6-phosphate synthase (TPS) and trehalose-phosphatase (TPP) domains and show that there is a close evolutionary relationship between these domains in proteins from diverse organisms. In bacteria TPS and TPP genes are clustered, whereas in eukaryotes these domains are fused in a single protein.ConclusionWe have demonstrated that trehalose biosynthesis pathways are widely distributed in nature. Interestingly, several eubacterial species have multiple pathways, while eukaryotes have only the TPS/TPP pathway. Vertebrates lack trehalose biosynthetic capacity but can catabolise it. TPS and TPP domains have evolved mainly in parallel and it is likely that they have experienced several instances of gene duplication and lateral gene transfer.
Plant Physiology | 2004
Nelson Avonce; Barbara Leyman; José Oscar Mascorro-Gallardo; Patrick Van Dijck; Johan M. Thevelein; Gabriel Iturriaga
In Arabidopsis (Arabidopsis thaliana), trehalose is present at almost undetectable levels, excluding its role as an osmoprotectant. Here, we report that overexpression of AtTPS1 in Arabidopsis using the 35S promoter led to a small increase in trehalose and trehalose-6-P levels. In spite of this, transgenic plants displayed a dehydration tolerance phenotype without any visible morphological alterations, except for delayed flowering. Moreover, seedlings overexpressing AtTPS1 exhibited glucose (Glc)- and abscisic acid (ABA)-insensitive phenotypes. Transgenic seedlings germinated on Glc were visibly larger with green well-expanded cotyledonary leaves and fully developed roots, in contrast with wild-type seedlings showing growth retardation and absence of photosynthetic tissue. An ABA dose-response experiment revealed a higher germination rate for transgenic plants overexpressing AtTPS1 showing insensitive germination kinetics at 2.5 μm ABA. Interestingly, germination in the presence of Glc did not trigger an increase in ABA content in plants overexpressing AtTPS1. Expression analysis by quantitative reverse transcription-PCR in transgenic plants showed up-regulation of the ABI4 and CAB1 genes. In the presence of Glc, CAB1 expression remained high, whereas ABI4, HXK1, and ApL3 levels were down-regulated in the AtTPS1-overexpressing lines. Analysis of AtTPS1 expression in HXK1-antisense or HXK1-sense transgenic lines suggests the possible involvement of AtTPS1 in the hexokinase-dependent Glc-signaling pathway. These data strongly suggest that AtTPS1 has a pivotal role in the regulation of Glc and ABA signaling during vegetative development.
International Journal of Molecular Sciences | 2009
Gabriel Iturriaga; Ramón Suárez; Bárbara Nova-Franco
Trehalose is a non-reducing disaccharide formed by two glucose molecules. It is widely distributed in Nature and has been isolated from certain species of bacteria, fungi, invertebrates and plants, which are capable of surviving in a dehydrated state for months or years and subsequently being revived after a few hours of being in contact with water. This disaccharide has many biotechnological applications, as its physicochemical properties allow it to be used to preserve foods, enzymes, vaccines, cells etc., in a dehydrated state at room temperature. One of the most striking findings a decade ago was the discovery of the genes involved in trehalose biosynthesis, present in a great number of organisms that do not accumulate trehalose to significant levels. In plants, this disaccharide has diverse functions and plays an essential role in various stages of development, for example in the formation of the embryo and in flowering. Trehalose also appears to be involved in the regulation of carbon metabolism and photosynthesis. Recently it has been discovered that this sugar plays an important role in plant-microorganism interactions.
Planta | 2007
José A. Miranda; Nelson Avonce; Ramón Suárez; Johan M. Thevelein; Patrick Van Dijck; Gabriel Iturriaga
Improving stress tolerance is a major goal for agriculture. Trehalose is a key molecule involved in drought tolerance in anhydrobiotic organisms. Here we describe the construction of a chimeric translational fusion of yeast trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase. This construct was overexpressed in yeast cells displaying both TPS and TPP enzyme activities and trehalose biosynthesis capacity. In Arabidopsis thaliana, the gene fusion was overexpressed using either the 35S promoter or the stress-regulated rd29A promoter. Transgene insertion in the genome was checked by PCR and transcript expression by RT-PCR. Several independent homozygous lines were selected in the presence of kanamycin and further analyzed. Trehalose was accumulated in all these lines at low levels. No morphological or growth alterations were observed in lines overexpressing the TPS1–TPS2 construct, whereas plants overexpressing the TPS1 alone under the control of the 35S promoter had aberrant growth, color and shape. TPS1–TPS2 overexpressor lines were glucose insensitive, consistent with a suggested role of trehalose/T6P in modulating sugar sensing and carbohydrate metabolism. Moreover, TPS1–TPS2 lines displayed a significant increase in drought, freezing, salt and heat tolerance. This is the first time that trehalose accumulation in plants is shown to protect against freezing and heat stress. Therefore, these results demonstrate that engineering trehalose metabolism with a yeast TPS–TPP bifunctional enzyme confers multiple stress protection in plants, comprising a potential tool to improve stress-tolerance in crops.
Molecular Plant-microbe Interactions | 2008
Ramón Suárez; Arnoldo Wong; Mario Ramírez; Aarón Barraza; María del Carmen Orozco; Miguel A. Cevallos; Miguel Lara; Georgina Hernández; Gabriel Iturriaga
Improving stress tolerance and yield in crops are major goals for agriculture. Here, we show a new strategy to increase drought tolerance and yield in legumes by overexpressing trehalose-6-phosphate synthase in the symbiotic bacterium Rhizobium etli. Phaseolus vulgaris (common beans) plants inoculated with R. etli overexpressing trehalose-6-phosphate synthase gene had more nodules with increased nitrogenase activity and higher biomass compared with plants inoculated with wild-type R. etli. In contrast, plants inoculated with an R. etli mutant in trehalose-6-phosphate synthase gene had fewer nodules and less nitrogenase activity and biomass. Three-week-old plants subjected to drought stress fully recovered whereas plants inoculated with a wild-type or mutant strain wilted and died. The yield of bean plants inoculated with R. etli overexpressing trehalose-6-phosphate synthase gene and grown with constant irrigation increased more than 50%. Macroarray analysis of 7,200 expressed sequence tags from nodules of plants inoculated with the strain overexpressing trehalose-6-phosphate synthase gene revealed upregulation of genes involved in stress tolerance and carbon and nitrogen metabolism, suggesting a signaling mechanism for trehalose. Thus, trehalose metabolism in rhizobia is key for signaling plant growth, yield, and adaptation to abiotic stress, and its manipulation has a major agronomical impact on leguminous plants.
Plant Physiology | 2004
Miguel Angel Villalobos; Dorothea Bartels; Gabriel Iturriaga
The resurrection plant Craterostigma plantagineum has the ability to survive complete dehydration. In an attempt to further understand desiccation tolerance in this plant, the CpMYB10 transcription factor gene was functionally characterized. CpMYB10 is rapidly induced by dehydration and abscisic acid (ABA) treatments in leaves and roots, but no expression was detected in fully hydrated tissues. Electrophoretic mobility shift assay experiments showed binding of rCpMYB10 to specific mybRE elements within the LEA Cp11-24 and CpMYB10 promoters. Localization of CpMYB10 transcript by in situ reverse transcription-PCR reactions showed expression in vascular tissues, parenchyma, and epidermis both in leaves and roots in response to ABA. Transgenic Arabidopsis plants transformed with CpMYB10 promoter fused to GUS gene showed reporter expression under ABA and stress conditions in several organs. Overexpression of CpMYB10 cDNA in Arabidopsis led to desiccation and salt tolerance of transgenics lines. Interestingly, it was found that plants overexpressing CpMYB10 exhibited Glc-insensitive and ABA hypersensitive phenotypes. Therefore, our results indicate that CpMYB10 in Arabidopsis is mediating stress tolerance and altering ABA and Glc signaling responses.
Biochemical Journal | 2002
Patrick Van Dijck; José Oscar Mascorro-Gallardo; Martien De Bus; Katrien Royackers; Gabriel Iturriaga; Johan M. Thevelein
Plants, such as Arabidopsis thaliana and Selaginella lepidophylla, contain genes homologous with the trehalose-6-phosphate synthase (TPS) genes of bacteria and fungi. Most plants do not accumulate trehalose with the desert resurrection plant S. lepidophylla, being a notable exception. Overexpression of the plant genes in a Saccharomyces cerevisiae tps1 mutant results in very low TPS-catalytic activity and trehalose accumulation. We show that truncation of the plant-specific N-terminal extension in the A. thaliana AtTPS1 and S. lepidophylla SlTPS1 homologues results in 10-40-fold higher TPS activity and 20-40-fold higher trehalose accumulation on expression in yeast. These results show that the plant TPS enzymes possess a high-potential catalytic activity. The growth defect of the tps1 strain on glucose was restored, however, the proper homoeostasis of glycolytic flux was not restored, indicating that the plant enzymes were unable to substitute for the yeast enzyme in the regulation of hexokinase activity. Further analysis of the N-terminus led to the identification of two conserved residues, which after mutagenesis result in strongly enhanced trehalose accumulation upon expression in yeast. The plant-specific N-terminal region may act as an inhibitory domain allowing modulation of TPS activity.
Fems Microbiology Letters | 2009
Julieta Rodríguez-Salazar; Ramón Suárez; Jesús Caballero-Mellado; Gabriel Iturriaga
Bacteria of the genus Azospirillum increase the grain yield of several grass crops. In this work the effect of inoculating maize plants with genetically engineered Azospirillum brasilense for trehalose biosynthesis was determined. Transformed bacteria with a plasmid harboring a trehalose biosynthesis gene-fusion from Saccharomyces cerevisiae were able to grow up to 0.5 M NaCl and to accumulate trehalose, whereas wild-type A. brasilense did not tolerate osmotic stress or accumulate significant levels of the disaccharide. Moreover, 85% of maize plants inoculated with transformed A. brasilense survived drought stress, in contrast with only 55% of plants inoculated with the wild-type strain. A 73% increase in biomass of maize plants inoculated with transformed A. brasilense compared with inoculation with the wild-type strain was found. In addition, there was a significant increase of leaf and root length in maize plants inoculated with transformed A. brasilense. Therefore, inoculation of maize plants with A. brasilense containing higher levels of trehalose confers drought tolerance and a significant increase in leaf and root biomass. This work opens the possibility that A. brasilense modified with a chimeric trehalose biosynthetic gene from yeast could increase the biomass, grain yield and stress tolerance in other relevant crops.
Australian Journal of Botany | 2000
Gabriel Iturriaga; D. F. Gaff; Rodolfo Zentella
A grass endemic to Mexico, Sporobolus atrovirens, was identified for the first time as a desiccation-tolerant resurrection plant. Nine species of desiccation-tolerant vascular plants were found in the highland area of Mexico, including four species of ferns (Cheilanthes and Pellaea species) and three species of Selaginella. Two other grasses collected were known desiccation-tolerant species distributed from South America (Cordoba) to North America (Georgia). The ferns Ch. bonariensis, Ch. integerrima, Ch. myriophylla and P. sagittata are newly reported as desiccation-tolerant plants. The osmoprotectant trehalose which has been recorded as rare in plants was found in air-dry foliage of representative species of widely different taxa (9–291 µM g–1 dry weight). The flora of desiccation-tolerant species in Mexico is discussed in connection with its ability to accumulate trehalose.
Plant Molecular Biology | 1996
Gabriel Iturriaga; Luc Leyns; Antonio Villegas; Rima Gharaibeh; Francesco Salamini; Dorothea Bartels
A cDNA and two genomic clones comprising highly similar genes that encode a protein with a Myb-related DNA-binding domain were isolated from the resurrection plant Craterostigma plantagineum. The structure of cpm5 and cpm10 (Craterostigma plantagineum myb) genes consists of three putative exons encoding a protein of 36.6 kDa. The cDNA of cpm7 encodes a closely related protein of 36.8 kDa. The canonical Myb domain present in transcriptional activators of yeast, animals and plants was localized in the amino terminus of deduced Cpm5, Cpm7 and Cpm10 proteins and corresponds to the two Myb repeats found in plants. The Myb domain of Cpm deduced proteins and a short stretch of amino acids adjacent to this region are closely related to a myb gene from Arabidopsis thaliana which is expressed in response to osmotic stress and ABA. The rest of the deduced protein has no similarity to other reported sequences. The myb-related genes in the Craterostigma genome comprise a small gene family of 6–8 members as estimated by hybridization with a bona fide Myb domain probe. Northern blot experiments showed specific expression of cpm10 in undifferentiated callus tissue up-modulated by ABA and expression of cpm7 mRNA in roots up-regulated by dehydration.