Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gabriel O. Sawakuchi is active.

Publication


Featured researches published by Gabriel O. Sawakuchi.


Medical Physics | 2009

Commissioning of the discrete spot scanning proton beam delivery system at the University of Texas M.D. Anderson Cancer Center, Proton Therapy Center, Houston.

M Gillin; Narayan Sahoo; M Bues; George Ciangaru; Gabriel O. Sawakuchi; F Poenisch; Bijan Arjomandy; Craig Martin; U Titt; Kazumichi Suzuki; Alfred R. Smith; X. Ronald Zhu

PURPOSE To describe a summary of the clinical commissioning of the discrete spot scanning proton beam at the Proton Therapy Center, Houston (PTC-H). METHODS Discrete spot scanning system is composed of a delivery system (Hitachi ProBeat), an electronic medical record (Mosaiq V 1.5), and a treatment planning system (TPS) (Eclipse V 8.1). Discrete proton pencil beams (spots) are used to deposit dose spot by spot and layer by layer for the proton distal ranges spanning from 4.0 to 30.6 g/cm2 and over a maximum scan area at the isocenter of 30 x 30 cm2. An arbitrarily chosen reference calibration condition has been selected to define the monitor units (MUs). Using radiochromic film and ion chambers, the authors have measured spot positions, the spot sizes in air, depth dose curves, and profiles for proton beams with various energies in water, and studied the linearity of the dose monitors. In addition to dosimetric measurements and TPS modeling, significant efforts were spent in testing information flow and recovery of the delivery system from treatment interruptions. RESULTS The main dose monitors have been adjusted such that a specific amount of charge is collected in the monitor chamber corresponding to a single MU, following the IAEA TRS 398 protocol under a specific reference condition. The dose monitor calibration method is based on the absolute dose per MU, which is equivalent to the absolute dose per particle, the approach used by other scanning beam institutions. The full width at half maximum for the spot size in air varies from approximately 1.2 cm for 221.8 MeV to 3.4 cm for 72.5 MeV. The measured versus requested 90% depth dose in water agrees to within 1 mm over ranges of 4.0-30.6 cm. The beam delivery interlocks perform as expected, guarantying the safe and accurate delivery of the planned dose. CONCLUSIONS The dosimetric parameters of the discrete spot scanning proton beam have been measured as part of the clinical commissioning program, and the machine is found to function in a safe manner, making it suitable for patient treatment.


Medical Physics | 2013

Commissioning dose computation models for spot scanning proton beams in water for a commercially available treatment planning system

X Zhu; F Poenisch; M Lii; Gabriel O. Sawakuchi; U Titt; M Bues; X. Song; Xinna Zhang; Y Li; George Ciangaru; Heng Li; M Taylor; Kazumichi Suzuki; Radhe Mohan; M Gillin; Narayan Sahoo

PURPOSE To present our method and experience in commissioning dose models in water for spot scanning proton therapy in a commercial treatment planning system (TPS). METHODS The input data required by the TPS included in-air transverse profiles and integral depth doses (IDDs). All input data were obtained from Monte Carlo (MC) simulations that had been validated by measurements. MC-generated IDDs were converted to units of Gy mm(2)/MU using the measured IDDs at a depth of 2 cm employing the largest commercially available parallel-plate ionization chamber. The sensitive area of the chamber was insufficient to fully encompass the entire lateral dose deposited at depth by a pencil beam (spot). To correct for the detector size, correction factors as a function of proton energy were defined and determined using MC. The fluence of individual spots was initially modeled as a single Gaussian (SG) function and later as a double Gaussian (DG) function. The DG fluence model was introduced to account for the spot fluence due to contributions of large angle scattering from the devices within the scanning nozzle, especially from the spot profile monitor. To validate the DG fluence model, we compared calculations and measurements, including doses at the center of spread out Bragg peaks (SOBPs) as a function of nominal field size, range, and SOBP width, lateral dose profiles, and depth doses for different widths of SOBP. Dose models were validated extensively with patient treatment field-specific measurements. RESULTS We demonstrated that the DG fluence model is necessary for predicting the field size dependence of dose distributions. With this model, the calculated doses at the center of SOBPs as a function of nominal field size, range, and SOBP width, lateral dose profiles and depth doses for rectangular target volumes agreed well with respective measured values. With the DG fluence model for our scanning proton beam line, we successfully treated more than 500 patients from March 2010 through June 2012 with acceptable agreement between TPS calculated and measured dose distributions. However, the current dose model still has limitations in predicting field size dependence of doses at some intermediate depths of proton beams with high energies. CONCLUSIONS We have commissioned a DG fluence model for clinical use. It is demonstrated that the DG fluence model is significantly more accurate than the SG fluence model. However, some deficiencies in modeling the low-dose envelope in the current dose algorithm still exist. Further improvements to the current dose algorithm are needed. The method presented here should be useful for commissioning pencil beam dose algorithms in new versions of TPS in the future.


Physics in Medicine and Biology | 2010

Experimental characterization of the low-dose envelope of spot scanning proton beams

Gabriel O. Sawakuchi; X. Ronald Zhu; F Poenisch; Kazumichi Suzuki; George Ciangaru; U Titt; A Anand; Radhe Mohan; M Gillin; Narayan Sahoo

In scanned proton beam radiotherapy, multiple pencil beams are used to deliver the total dose to the target volume. Because the number of such beams can be very large, an accurate dosimetric characterization of every single pencil beam is important to provide adequate input data for the configuration of the treatment planning system. In this work, we present a method to measure the low-dose envelope of single pencil beams, known to play a meaningful role in the dose computation for scanned proton beams. We measured the low-dose proton beam envelope, which extends several centimeters outwards from the center of each single pencil beam, by acquiring lateral dose profile data, down to relative dose levels that were a factor of 10(4) lower than the central axis dose. The overall effect of the low-dose envelope on the total dose delivered by multiple pencil beams was determined by measuring the dose output as a function of field size. We determined that the low-dose envelope can be influential even for fields as large as 20 cm x 20 cm.


Physics in Medicine and Biology | 2008

Density heterogeneities and the influence of multiple Coulomb and nuclear scatterings on the Bragg peak distal edge of proton therapy beams

Gabriel O. Sawakuchi; U Titt; Dragan Mirkovic; Radhe Mohan

Density heterogeneities in the path of proton beams are known to cause degradation of the Bragg peak and, thus, widening of its distal fall-off. Inadequate accounting for this effect may lead to unwanted dose delivered to normal tissue distal to the target volume. In low-density regions, such as the thorax, this may lead to large volumes of healthy tissue receiving unnecessary dose. Although it is known that multiple Coulomb scattering within the density heterogeneities is the main cause of Bragg peak degradation, no systematic attempt has been made to quantify the contribution of multiple Coulomb scattering and nuclear scattering. Through a systematic study using a 220 MeV proton beam, we show that nuclear scattering contributes to about 5% of the distal fall-off width and is only slightly dependent on heterogeneity complexity. Furthermore, we also show that the energy spectra of the proton fluence downstream of various heterogeneity volumes are well correlated with the Bragg peak distal fall-off widths. Based on this correlation, a novel method for predicting distal fall-offs is suggested. This method is tested for three clinical setups of a voxelized model of a human head based on computer tomography data. Results are within 3% of the distal fall-off values obtained using Monte Carlo simulations.


Physics in Medicine and Biology | 2010

Monte Carlo investigation of the low-dose envelope from scanned proton pencil beams

Gabriel O. Sawakuchi; U Titt; Dragan Mirkovic; George Ciangaru; X. Ronald Zhu; Narayan Sahoo; M Gillin; Radhe Mohan

Scanned proton pencil beams carry a low-dose envelope that extends several centimeters from the individual beams central axis. Thus, the total delivered dose depends on the size of the target volume and the corresponding number and intensity of beams necessary to cover the target volume uniformly. This dependence must be considered in dose calculation algorithms used by treatment planning systems. In this work, we investigated the sources of particles contributing to the low-dose envelope using the Monte Carlo technique. We used a validated model of our institutions scanning beam line to determine the contributions to the low-dose envelope from secondary particles created in a water phantom and particles scattered in beam line components. Our results suggested that, for high-energy beams, secondary particles produced by nuclear interactions in the water phantom are the major contributors to the low-dose envelope. For low-energy beams, the low-dose envelope is dominated by particles undergoing multiple Coulomb scattering in the beam line components and water phantom. Clearly, in the latter situation, the low-dose envelope depends directly on beam line design features. Finally, we investigated the dosimetric consequences of the low-dose envelope. Our results showed that if not modeled properly the low-dose envelope may cause clinically relevant dose disturbance in the target volume. This work suggested that this low-dose envelope is beam line specific for low-energy beams, should be thoroughly experimentally characterized and validated during commissioning of the treatment planning system, and therefore is of great concern for accurate delivery of proton scanning beam doses.


Medical Physics | 2010

An MCNPX Monte Carlo model of a discrete spot scanning proton beam therapy nozzle

Gabriel O. Sawakuchi; Dragan Mirkovic; L. Perles; Narayan Sahoo; X. Ron Zhu; George Ciangaru; Kazumichi Suzuki; M Gillin; Radhe Mohan; U Titt

PURPOSE The purposes of this study were to validate a discrete spot scanning proton beam nozzle using the Monte Carlo (MC) code MCNPX and use the MC validated model to investigate the effects of a low-dose envelope, which surrounds the beams central axis, on measurements of integral depth dose (IDD) profiles. METHODS An accurate model of the discrete spot scanning beam nozzle from The University of Texas M. D. Anderson Cancer Center (Houston, Texas) was developed on the basis of blueprints provided by the manufacturer of the nozzle. The authors performed simulations of single proton pencil beams of various energies using the standard multiple Coulomb scattering (MCS) algorithm within the MCNPX source code and a new MCS algorithm, which was implemented in the MCNPX source code. The MC models were validated by comparing calculated in-air and in-water lateral profiles and percentage depth dose profiles for single pencil beams with their corresponding measured values. The models were then further tested by comparing the calculated and measured three-dimensional (3-D) dose distributions. Finally, an IDD profile was calculated with different scoring radii to determine the limitations on the use of commercially available plane-parallel ionization chambers to measure IDD. RESULTS The distance to agreement, defined as the distance between the nearest positions of two equivalent distributions with the same value of dose, between measured and simulated ranges was within 0.13 cm for both MCS algorithms. For low and intermediate pencil beam energies, the MC simulations using the standard MCS algorithm were in better agreement with measurements. Conversely, the new MCS algorithm produced better results for high-energy single pencil beams. The IDD profile calculated with cylindrical tallies with an area equivalent to the area of the largest commercially available ionization chamber showed up to 7.8% underestimation of the integral dose in certain depths of the IDD profile. CONCLUSIONS The authors conclude that a combination of MCS algorithms is required to accurately reproduce experimental data of single pencil beams and 3-D dose distributions for the scanning beam nozzle. In addition, the MC simulations showed that because of the low-dose envelope, ionization chambers with radii as large as 4.08 cm are insufficient to accurately measure IDD profiles for a 221.8 MeV pencil beam in the scanning beam nozzle.


Journal of Applied Physics | 2008

Relative optically stimulated luminescence and thermoluminescence efficiencies of Al2O3: C dosimeters to heavy charged particles with energies relevant to space and radiotherapy dosimetry

Gabriel O. Sawakuchi; E.G. Yukihara; S.W.S. McKeever; E.R. Benton; R. Gaza; Yukio Uchihori; Nakahiro Yasuda; H. Kitamura

This article presents a comprehensive characterization of the thermoluminescence (TL) and optically stimulated luminescence (OSL) relative luminescence efficiencies of carbon-doped aluminum (Al2O3:C) for heavy charged particles (HCPs) with atomic numbers ranging from 1 (proton) to 54 (xenon) and energies ranging from 7 to 1000 MeV/u, and investigates the dependence of the Al2O3:C response on experimental conditions. Relative luminescence efficiency values are presented for 19 primary charge/energy combinations, plus 31 additional charge/energy combinations obtained by introducing absorbers in the primary beam. Our results show that for energies of hundreds of MeV/u the data can be described by a single curve of relative luminescence efficiency versus linear energy transfer (LET). This information is needed to compensate for the reduced OSL efficiency to high-LET particles in such applications as space dosimetry. For lower energies, the relative luminescence efficiency as function of LET cannot be describe...


Physics in Medicine and Biology | 2010

Determination of average LET of therapeutic proton beams using Al2O3:C optically stimulated luminescence (OSL) detectors

Gabriel O. Sawakuchi; Narayan Sahoo; P Gasparian; Matthew G Rodriguez; Louis Archambault; U Titt; E.G. Yukihara

In this work we present a methodology and proof of concept to experimentally determine average linear energy transfer (LET) of therapeutic proton beams using the optically stimulated luminescence (OSL) of small Al(2)O(3):C detectors. Our methodology is based on the fact that the shape of the OSL decay curve of Al(2)O(3):C detectors depends on the LET of the radiation field. Thus, one can use the shape of the OSL decay curves to establish an LET calibration curve, which in turn permits measurements of LET. We performed irradiations at the M D Anderson Cancer Center Proton Therapy Center, Houston (PTCH), with passive scattering beams. We determined the average LET of the passive scattering beams using a validated Monte Carlo model of the PTCH passive scattering nozzle and correlated them with the shape of the OSL decay curve to obtain an LET calibration curve. Using this calibration curve and OSL measurements, we determined the averaged LET at various water-equivalent depths for therapeutic spread-out Bragg peaks and compared the results with averaged LETs determined using the Monte Carlo simulations. Agreement between measured and simulated fluence-averaged LET was within 24% for low energy spread-out Bragg peak (SOBP) fields and within 14% for high energy SOBP fields. Agreement between measured and simulated dose-averaged LET was within 12% for low energy SOBP fields and within 47% for high energy SOBP fields. The data presented in this work demonstrated the correlation between the OSL decay curve shapes and the average LET of the radiation fields, providing proof of concept of the feasibility of using OSL from Al(2)O(3):C detectors to measure average LET of therapeutic proton beams.


Physics in Medicine and Biology | 2010

Adjustment of the lateral and longitudinal size of scanned proton beam spots using a pre-absorber to optimize penumbrae and delivery efficiency.

U Titt; Dragan Mirkovic; Gabriel O. Sawakuchi; L. Perles; W Newhauser; Phillip J. Taddei; Radhe Mohan

In scanned-beam proton therapy, the beam spot properties, such as the lateral and longitudinal size and the minimum achievable range, are influenced by beam optics, scattering media and drift spaces in the treatment unit. Currently available spot scanning systems offer few options for adjusting these properties. We investigated a method for adjusting the lateral and longitudinal spot size that utilizes downstream plastic pre-absorbers located near a water phantom. The spot size adjustment was characterized using Monte Carlo simulations of a modified commercial scanned-beam treatment head. Our results revealed that the pre-absorbers can be used to reduce the lateral full width at half maximum (FWHM) of dose spots in water by up to 14 mm, and to increase the longitudinal extent from about 1 mm to 5 mm at residual ranges of 4 cm and less. A large factor in manipulating the lateral spot sizes is the drift space between the pre-absorber and the water phantom. Increasing the drift space from 0 cm to 15 cm leads to an increase in the lateral FWHM from 2.15 cm to 2.87 cm, at a water-equivalent depth of 1 cm. These findings suggest that this spot adjustment method may improve the quality of spot-scanned proton treatments.


Medical Physics | 2016

Reference dosimetry in magnetic fields: formalism and ionization chamber correction factors

D. J. O'Brien; D. A. Roberts; Geoffrey S. Ibbott; Gabriel O. Sawakuchi

PURPOSE Magnetic resonance imaging-guided radiotherapy (MRIgRT) provides superior soft-tissue contrast and real-time imaging compared with standard image-guided RT, which uses x-ray based imaging. Several groups are developing integrated MRIgRT machines. Reference dosimetry with these new machines requires accounting for the effects of the magnetic field on the response of the ionization chambers used for dose calibration. Here, the authors propose a formalism for reference dosimetry with integrated MRIgRT devices. The authors also examined the suitability of the TPR10 (20) and %dd(10)x beam quality specifiers in the presence of magnetic fields and calculated detector correction factors to account for the effects of the magnetic field for a range of detectors. METHODS The authors used full-head and point-source Monte Carlo models of an MR-linac along with detailed detector models of an Exradin A19, an NE2571, and several PTW Farmer chambers to calculate magnetic field correction factors for six commercial ionization chambers in three chamber configurations. Calculations of ionization chamber response (performed with geant4) were validated with specialized Fano cavity tests. %dd(10)x values, TPR10 (20) values, and Spencer-Attix water-to-air restricted stopping power ratios were also calculated. The results were further validated against measurements made with a preclinical functioning MR-linac. RESULTS The TPR10 (20) was found to be insensitive to the presence of the magnetic field, whereas the relative change in %dd(10)x was 2.4% when a transverse 1.5 T field was applied. The parameters chosen for the ionization chamber calculations passed the Fano cavity test to within ∼0.1%. Magnetic field correction factors varied in magnitude with detector orientation with the smallest corrections found when the chamber was parallel to the magnetic field. CONCLUSIONS Reference dosimetry can be performed with integrated MRIgRT devices by using magnetic field correction factors, but care must be taken with the choice of beam quality specifier and chamber orientation. The uncertainties achievable under this formalism should be similar to those of conventional formalisms, although this must be further quantified.

Collaboration


Dive into the Gabriel O. Sawakuchi's collaboration.

Top Co-Authors

Avatar

Narayan Sahoo

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

U Titt

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Radhe Mohan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

M Gillin

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

George Ciangaru

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Dragan Mirkovic

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Kazumichi Suzuki

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F Poenisch

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

X Zhu

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge